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The Riemann-Roch theorem is a fundamental result in the theory of Riemann surfaces and in the related area of

complex algebraic curves. Given a compact Riemann surface R and an object D called a divisor that constrains the

zeros and poles of a meromorphic function on R, the Riemann-Roch theorem describes the space L(D) of meromor-

phic functions on R such that each function in L(D) satisfies the constraints implied by D.

This paper develops the essential theory necessary to state and prove the Riemann-Roch theorem for compact Rie-

mann surfaces. The full theory is available, for example, in [Miranda 1995] and in the references cited therein. For

a more elementary approach based on complex algebraic curves, see [Kirwan 1992]. For a related result, also called

the Riemann-Roch theorem, in the area of algebraic curves over algebraically closed fields, see [Fulton 2008]. In

this version, meromorphic functions on Riemann surfaces are replaced by rational functions on algebraic curves.

This paper assumes that you are familiar with the material covered in my papers Complex Charts on Topological

Surfaces and Holomorphic Maps Between Riemann Surfaces. It also assumes some knowledge of groups, rings,

vector spaces, and homomorphisms between these objects. These topics are covered in my paper Definitions for

Commutative Algebra.

1. Meromorphic One Forms

Let R = (T , A) be a Riemann surface, where the atlas A is a family of charts {Ci = (Ui , φ i)}. Recall that a holomor-

phic one form ω on R is a family of holomorphic complex one forms {ω i = fi dz}, one on the open set φ i(Ui) ⊆ C

for each chart Ci , such that for any two charts Ci and C j we have

ω i = φ *
ij ω j

on φ i(Ui ∩ U j). Here φ ij is the transition function φ j φ −1
i , and φ *

ij ω j is the pullback of ω j with respect to φ ij , i.e.,

the complex one form defined by

(φ *
ij ω j)(z) = ω j(φ ij(z)) dφ ij(z) = f j(φ ij(z))φ ′ij(z) dz.

See Complex Charts on Topological Surfaces, § 2.3 and § 4.3.

A meromorphic one form is identical to a holomorphic one form, except that we allow the complex one forms

ω i = fi dz to be meromorphic. That is, each complex function fi is holomorphic on φ i(Ui) − Pi , where Pi is a dis-

crete (and possibly empty) set of poles; and at each point in Pi , fi has a Laurent series expansion with a positive and

finite number of negative powers.

In this section, we establish some basic facts about meromorphic one forms.

1.1. An Example

We begin with an example. Let R = (T , A) be the Riemann sphere C∞, where A is the maximal atlas containing the

standard charts C1 = (U1, φ1) and C2 = (U2, φ2) with domains U1 = C and U2 = C − {0} ∪ {∞}. Define ω1 = z dz

and ω2 = −(1 /z3) dz. Then φ12 = φ21 = 1/z, φ ′12 = φ ′21 = −z−2, and by the definition of the pullback we have

ω2 = φ *
21 ω1 and ω1 = φ *

12 ω2.

We wish to extend {ω1, ω2} to a meromorphic one form {ω i} on C∞. Recall from Complex Charts on Topological

Surfaces, § 2.3, that if g and h are holomorphic functions and ω is a holomorphic one form, then we have

g*(h*ω ) = (h g)*ω . (1)

The same proof goes through for meromorphic one forms, if we exclude from the domain of each side the discrete

set of points p that are poles of ω (h(g(z)). Equation (1) is very useful; henceforth we will call it the pullback
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composition lemma for meromorphic one forms.

Let Ci = (Ui , φ i) be any chart of C∞, and for each α in {1, 2}, on Uiα = Ui ∩ Uα , let ω iα = φ *
iα ωα . Every point p of

Ui lies in at least one of the chart domains U1 and U2, so at least one of ω i1 and ω i2 is defined by a Laurent series

expansion at p. For points p that lie in both U1 and U2 (i.e., all points other than zero and ∞), the definitions are

consistent, because we have

ω i1 = φ *
i1ω1 = φ *

i1(φ *
12ω2) = (φ12 φ i1)*ω2 = φ *

i2ω2 = ω i2

at each point near p where the pullbacks and compositions are defined. Therefore we may put the definitions of ω i1

and ω i2 together to define ω i .

We will now show that this definition yields a valid meromorphic one form on C∞, i.e., for all charts Ci and C j of A,

we have φ i = φ *
ijω j . Here we restrict the pullback to the domain where it is defined, i.e., points φ i( p) such that

p ∈ Ui ∩ U j and φ j( p) is not a pole of ω j , Let p be such a point, with p ∈ Uiα and p ∈ U jβ , for α and β in {1, 2}.

Then at φ i( p) we hav e

φ *
ijω j = φ *

ij(φ
*
jβ ω β ) (definition of ω j)

= (φ jβ φ ij)
*ω β (pullback composition lemma)

= φ *
iβ ω β (definitions of φ jβ , φ ij , and composition)

= φ *
iβ (φ *

βα ωα ) (shown above for α ≠ β ; obvious for α = β )

= (φ βα φ iβ )*ωα (pullback composition lemma)

= φ *
iα ωα (definitions of φ βα , φ iβ , and composition)

= ω i (definition of ω i),

which was to be shown.

Note that the proof depends only on the fact that ω1 and ω2 are consistent, in the sense that ωα = φ *
α β ω β for α and β

in the set {1, 2}. Thus we have shown that one may give a meromorphic one form on C∞ by consistently defining

the meromorphic one forms ω1 and ω2 on the charts C1 and C2. And in fact it suffices to show, for example, that

ω1 = φ *
12 ω2, for in this case we have

φ *
21 ω1 = φ *

21(φ *
12 ω2) = (φ12 φ21)*ω2 = id*ω2 = ω2,

where id denotes the identity function z → z.

1.2. The Order of a Meromorphic One Form

Let R = (T , A) be a Riemann surface, and let f : R → C be a meromorphic function. Recall that f has an order at

each point p in T , giv en by

ordp f = ordpi
fi ,

where Ci = (Ui , φ i) is a chart of A, pi = φ i( p), and fi is the local function f φ −1
i . The order is well-defined,

because it is the same for any choice of chart. See Holomorphic Maps Between Complex Riemann Surfaces, § 1.5.

We now establish a similar result for meromorphic one forms on R.

Let R = (T , A) be a Riemann surface, and let ω = {ω i = fi dz} be a meromorphic one form on R. For each point p

in T , define

ordp ω = ordpi
fi ,

where Ci is any chart of A, and pi = φ i( p). We must show that this definition is independent of the choice of chart.

Fix a chart Ci = (Ui , φ i) of A that contains p. Use the subset topology in T to make Ui into a topological space T ′.
Construct an atlas A′ on T ′ such that, for each chart C′j = (U ′j ,ψ j) in A′, U ′j is U j ∩ Ui , and ψ j is the restriction of

φ j to U ′j . Then R′ = (T ′, A′) is a Riemann surface. Further, since we are interested in the local behavior of R near
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p, it suffices to show the result for R′. Now remove the primes and replace ψ with φ . We hav e reduced the problem

to proving that the order of a meromorphic one form is well-defined at a point p on a Riemann surface R = (T , A) in

which U j ⊆ Ui for some chart Ci containing p and all charts C j of A.

For each chart C j in A, define a local function

F j = φ *
ji fi = fi φ ji .

By the construction above, F j is defined on all of φ j(U j). We wish to show that the family F = {F j} is a meromor-

phic function on R. For this it suffices to show that F j = φ *
jk Fk for all pairs of charts C j and Ck in A. See Complex

Charts on Topological Surfaces, § 2.2 and § 4.2. From the definitions, we have

φ *
jk Fk = fi φ ki φ jk

= fi φ i φ −1
k φ k φ −1

j

= fi φ ji

= F j .

This establishes what we want.

By the previous result for meromorphic functions, we have

ordp j
F j = ordpk

Fk

for all pairs of charts C j and Ck . Because φ ′ji( p j) ≠ 0, the power series expansion of φ ′ji at p j must have a nonzero

constant term. Therefore multiplying by φ ′ji does not change the order at p j ; and similarly for φ ′ki . Thus we have

ordp j
(F jφ ′ji) = ordpk

(Fkφ ′ki). (2)

Now consider the local one form ω j . By the definition of the one form ω , we hav e

ω j = f j dz = φ *
ji ( fi dz) = ( fi φ ji)φ ′ji dz = F jφ ′ji dz.

Therefore f j = F jφ ′ji , and similarly for fk . Together with (2), this fact establishes the result.

1.3. The Pullback of a One Form

Let R1 = (T1, A1) and R2 = (T2, A2) be Riemann surfaces, and let f : R1 → R2 be a holomorphic map. We say that f

has the chart inclusion property if, for every chart Ci = (Ui , φ i) of R1, we hav e a discrete set Pi ⊆ Ui and a chart

Di = (Vi ,ψ i) of R2 such that f (Ui − Pi) ⊆ Vi . In this case we call Di an including chart for Ci with respect to f .

Note that it is permitted for Pi to be empty.

For example, let R = (T , A) be a Riemann surface, and let f : R → C∞ be a holomorphic map. Then f has the chart

inclusion property, because for every chart Ci = (Ui , φ i) in A, we can let Di be the chart C∞ − {∞} on C∞, and we

can let Pi be the points p in Ui such that f ( p) = ∞. Then Pi is a discrete set, and f (Ui − Pi) lies in Di , as required.

Let ω = {gi dz} be a meromorphic one form on R2. If f has the chart inclusion property, then we can define a

meromorphic one form on R1, called a pullback of ω via f and written f *ω , as follows. For each chart Ci in R1,

choose an including chart Di in R2. Let hi be the holomorphic function ψ i f φ −1
i . Let χ denote f *ω . On

φ i(Ui − Pi), define

χ i = ( f *ω )i = h*
i ω i = (gi hi)h′i dz. (3)

At each point p of φ i(Pi), if (gi hi)h′i has a removable singularity, then we remove the singularity in the definition

of χ at p. Otherwise χ has a pole at p.

For each chart Ci in R1, we call the chart Di in the definition of f *ω the corresponding chart to Ci with respect to

the pullback f *ω . Note that the pullback f *ω is not uniquely determined by f and by ω ; it also depends on the

choice of corresponding charts. We will adopt the convention that f *ω denotes any pullback of ω via f .

We must show that equation (3) defines a valid one form on R1, i.e., for all pairs of charts Ci = (Ui , φ i) and

C j = (U j , φ i) on R1, we hav e χ i = φ *
ij χ j . Because ω is a one form, on φ i(Ui − Pi) we hav e
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χ j = h*
jω j = h*

j(ψ
*
jiω i).

By the pullback composition lemma (§ 1.1), we have

χ j = (ψ ji h j)
*ω i .

By the definition of ψ ji and of h j , this yields

χ j = (ψ i f φ −1
j )*ω i .

By the pullback composition lemma again, we have

φ *
ij χ j = φ *

ij(ψ j f φ −1
j )*ω i = (ψ i f φ −1

j φ ij)
*ω i .

By the definitions of φ j , φ ij , and hi , we hav e

φ *
ij χ j = (ψ i f φ −1

i )*ω i = h*
i ω i = χ i .

This establishes what we want on φ i(Ui − Pi). At each point p in φ (Pi) we must have (gi gi)h′i = (g j g j)h′j ,
because the value at p is determined by the neighboring values, which are the same.

We say that a pullback f *ω has corresponding centers if, for every chart Ci in R1 that is centered at p, the corre-

sponding chart Di in R2 is centered at f ( p).

Fix a pullback f *ω with corresponding centers. The following proposition relates the order of f *ω at a point p with

the order of ω at f ( p) and the multiplicity of f at p:

Proposition: Let R1 = (T1, A1) and R2 = (T2, A2) be Riemann surfaces, and let f : R1 → R2 be a holomorphic

map with the chart inclusion property. Let ω = {gi dz} be a meromorphic one form on R2, and let f *ω be a pull-

back with corresponding centers. Then for any point p in T , we have

ordp ( f *ω ) = (1 + ord f (p) ω ) multp f − 1.

To prove the proposition, we need a lemma:

Lemma: Let U , V ⊆ C be open neighborhoods of zero. Let g be a holomorphic function on U, with g(U) ⊆ V ,

and let f be a meromorphic function on V .  Then

ord0 ( f g) = (ord0 f )(ord0 g).

Proof: Let m = ord0 f , and let n = ord0 g. We must prove that ord0( f g) = mn. Consider the Laurent series

expansions of f and g at 0. We hav e f (z) = zm P(z) and g(z) = znQ(z), where P and Q are power series with

nonzero constant terms, and n ≥ 0. Then

( f g)(z) = zmn[Qm(z)][(P znQ)(z)],

where Qm and P znQ are power series with nonzero constant terms. Therefore

( f g)(z) = zmn H(z),

where H = Qm(P znQ) is a power series with a nonzero constant term, and so ord0 ( f g) = mn, as required.

Proof of the proposition: Fix a chart Ci = (Ui , φ i) centered at p. Then by assumption the corresponding chart

Di = (Vi ,ψ i) is centered at f ( p). Let hi be the holomorphic function ψ i f φ −1
i . Then by definition we have

ordp ( f *ω ) = ord0 ( f *ω )i = ord0 (gi hi)h′i .

Let the Laurent series expansions for gi hi and for h′i be zm P and znQ, where P and Q are power series with

nonzero constant terms. Then (gi hi)h′i = zm+n PQ, so

ordp ( f *ω ) = ord0 (gi hi) + ord0 h′i ,

and by the lemma we have

ordp ( f *ω ) = (ord0 gi)(ord0 hi) + ord0 h′i . (4)

Now consider the following facts:
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1. By definition, ord0 gi = ord f (p) ω .

2. hi(0) = 0, so the power series expansion for hi has a zero constant term. Therefore ord0 hi = multp f and

ord0 h′i = multp f − 1. See Holomorphic Maps Between Riemann Surfaces, § 1.3.

Putting these facts together with (4) and collecting terms yields the result.

1.4. The Residue Theorem for Compact Riemann Surfaces

Let R = (T , A) be a Riemann surface, and let ω = {ω i} be a meromorphic one form on R. Fix a point p in T . We

define the residue of ω at p, written Resp ω , to be the residue at φ i( p) of fi , where Ci = (Ui , φ i) is any chart of A

containing p, and ω i = fi dz. From Holomorphic Maps Between Riemann Surfaces, § 1.5, we know that the residue

is independent of the choice of chart, so this definition is valid.

The following theorem, called the residue theorem, is a basic result in the theory of integration on compact Rie-

mann surfaces:

Theorem (Residue Theorem): Let R = (T , A) be a compact Riemann surface, and let ω = {ω i} be a meromorphic

one form on R. Then

p ∈ T
Σ Resp ω = 0.

Note that the sum in the statement of the theorem is finite, because (1) the residue at p is nonzero only if the order of

ω at p is negative; and (2) the set of points of ω of negative order is a closed and discrete subset of the compact

space T , and therefore finite.

To prove the theorem, we need some definitions and lemmas.

Up to an invertible differentiable map, we know that T is a sphere with g ≥ 0 handles, and that T has a triangulation.

See Holomorphic Maps Between Riemann Surfaces, § 2.1 and § 2.2. We call a triangulation τ oriented if each trian-

gle ti in τ has an orientation, i.e., a direction of traversing each edge of ti that stays consistent when passing from

one edge to another. Each triangle in τ has exactly two possible orientations. We shall say that an oriented triangu-

lation τ sums to zero if, for each edge e in τ , the adjacent triangles sharing e traverse e in opposite directions.

Consider a triangle ti in τ . We may consider each oriented edge eij of ti as a path σ ij in R. See Complex Charts on

Topological Surfaces, § 2.3 and § 4.3. We define the boundary chain ∂ti of a triangle ti to be the sum of the ori-

ented edge paths. We define the triangluation chain γ to be the sum of the boundary chains ∂ti in τ . Then τ sums

to zero if and only if γ = 0, because the opposite pairs of edges cancel out.

Lemma 1: Let R = (T , A) be a compact Riemann surface. Then for any integer n > 0, T  has an oriented triangu-

lation with at least n triangles that sums to zero.

Proof: We proceed by induction on the genus g of R. In the case g = 0, we can triangulate a sphere with a tetrahe-

dron. It is easy to orient the edges of this triangulation so that it sums to zero. Given any oriented triangulation τ
with m < n triangles, we can add more triangles as follows. Pick a triangle ti in τ , pick a point p in the interior of ti ,

and add edges from p to each of the vertices of ti . Then we can orient the new edges so that the resulting triangula-

tion sums to zero. We can repeat this process until τ has at least n triangles. This proves the result for the case

g = 0.

Now assume the result for a compact Riemann surface Rg−1 with g − 1 handles. We can form a compact Riemann

surface Rg of genus g by attaching a triangulated sphere S to Rg−1 at each of two triangles. We can connect each

pair of triangles with a triangular cylinder, and we can place the lines of the cylinder, twisting if necessary so that the

triangles have matching orientations. Then we can triangulate the cylinder by adding a diagonal edge to each of the

three rectangular faces, and we can orient the new edges so that the resulting triangulation sums to zero.

Lemma 2: Let U ⊆ C be an open set, and let ω be a meromorphic one form on U. Let t be an oriented triangle

contained in U. Then

∂t

∫ ω = 2π i
p ∈ t
Σ Resp ω .

Proof: Construct a closed path σ in U by smoothing the corners of ∂t. Then by Calculus Over the Complex Num-

bers, § 6.1, we have
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σ
∫ ω = 2π i

p ∈ t
Σ Resp ω .

Note that all the terms of the sum are zero, except at the finite set of points p that are poles of ω . By moving the

smoothed corners of σ close enough to the corners of ∂t, we can make the integral over σ arbitrarily close to the

integral over ∂t. But the integral over σ is constant. This proves the result.

Proof of the theorem: By Lemma 1, we can choose an oriented triangulation τ of T that sums to zero, and by adding

enough triangles, we can ensure that each triangle lies inside a chart of A. Further, because the set of poles of ω is

finite, we can ensure that no pole lies on a vertex of τ . Let γ be the sum of the boundary chains ∂ti . Then γ = 0, so

we have

γ
∫ ω = 0. (5)

On the other hand, by the definition of integration on a Riemann surface (see Complex Charts on Topological Sur-

faces, § 2.3 and § 4.3), the integral in (5) is the sum of the integrals over the oriented triangles. Because each trian-

gle is contained in a chart domain, each such integral is a complex integral in an open subset of C. Therefore by

Lemma 2, we have

γ
∫ ω = 2π i

p ∈ P
Σ Resp ω . (6)

Together, (5) and (6) establish the result.

Example 1: Let R = C∞, and let ω be the meromorphic one form defined in § 1.1. Then ω has a pole of order three

at ∞ and no other poles. So the residue of ω at every point is zero.

Example 2: Again let R = C∞. Define ω1 = 1/z dz and ω2 = −(1 /z) dz. As shown in § 1.1, this definition gives a

valid meromorphic one form on R. The residue of ω is 1 at zero, −1 at ∞, and zero everywhere else. The sum of

the residues is zero, as expected.

Example 3: Let R = (T , A) be a compact Riemann surface, and let f be a meromorphic function on R. Let ω be the

meromorphic one form on R given by ω i = dfi / fi , where fi is the local function f φ −1
i associated with the chart

Ci = (Ui , φ i) of A. From Holomorphic Maps Between Riemann Surfaces, § 1.5, we know that (1) ω is a meromor-

phic one form on R and (2) for each point p in T , we hav e Resp ω = ordp f . By the residue theorem, the sum of the

residues of ω over the points of T is zero. Therefore the sum of the orders of f is zero. Thus we have proved, in a

different way, the result shown in § 3.6 of Holomorphic Maps Between Riemann Surfaces, namely that the sum of

the orders of a meromorphic function over the points on a compact Riemann surface is zero.

2. Spaces of Functions and One Forms

In this section we define several spaces of functions and of one forms that are important in the study of Riemann sur-

faces. Throughout this section, R = (T , A) denotes a Riemann surface.

2.1. Meromorphic Functions and One Forms

The space M(R): We write M(R) to denote the set of meromorphic functions on R. M(R) is a field, according to

the following rules:

1. f + g = p → f ( p) + g( p)

2. − f = p → − f ( p)

3. fg = p → f ( p)g( p)

4. 1/ f = p → 1/ f ( p)

M(R) is also a vector space over C, with scalar multiplication given by the rule af = p → af ( p).

The space M (1)(R): We write M (1)(R) to denote the set of meromorphic one forms on R. M (1)(R) is a vector space

over C, with addition given by the rule

{ fi dz} + {gi dz} = {( fi + gi) dz}

and scalar multiplication given by the rule
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a ⋅ { fi dz} = {afi dz}.

The addition rule is valid because we have

φ *
ij[( f j + g j) dz] = [( f j + g j) φ ij]φ ′ij dz

= ( f j φ ij)φ ′ij dz + (g j φ ij)φ ′ij dz

= φ *
ij( f j dz) + φ *

ij(g j dz)

= fi dz + gi dz = ( fi + gi) dz.

A similar computation shows that φ *
ij(af j) = afi .

M (1)(R) is also a vector space over the field M(R), with scalar multiplication given by the rule

f ⋅ {gi dz} = { fi gi dz},

where f is a meromorphic function on R, and fi = f φ −1
i . A similar computation to the one given above shows

that φ *
ij( f j g j) = fi gi .

2.2. Holomorphic Functions and One Forms

The space O(R): We write O(R) to denote the set of holomorphic functions on R. O(R) is a ring and is a subring of

M(R). It is also a vector space over C and is a subspace of M(R).

The space O(1)(R): We write O(1)(R) to denote the set of holomorphic one forms on R. O(1)(R) is a subspace of

M (1)(R) as a vector space over C and as a vector space over M(R).

3. Divisors

We hav e seen several examples of functions that associate, to each point p on a Riemann surface R, information

about the local behavior at p of a function, map, or differential form on R. Examples include the order function

p → ordp f for a meromorphic function f , the multiplicity function p → multp f for a holomorphic map f , and

the residue function p → Resp ω for a meromorphic one form ω. We now dev elop some standard notation for and

properties of this kind of function.

3.1. The Definition of a Divisor

Let R = (T , A) be a Riemann surface. A divisor on R is a function D: T → G, where G is an additive group. This

group is often, but not always, the integers. We write a divisor as a formal sum, as follows:

D =
p ∈ T
Σ g p p, (1)

where g p = D( p). By associating a value g p to each point p, a divisor gives a very general way to record local

information at each point on a Riemann surface.

As usual, we write D1 + D2 to denote the function p → D1( p) + D2( p), and we write −D to denote the function

p → − D( p). Here + denotes addition in G, and − denotes the additive inv erse in G. We also write D1 − D2 as a

shorthand for D1 + (−D2), in the usual way. Finally, we write 0 to denote the divisor p → 0, where the second 0

means the identity in the additive group G. These definitions make the set of all divisors D: T → G for a fixed addi-

tive group G into an additive group.

Fix a divisor D. The support of D is the set of points p in T for which D( p) ≠ 0. When the support of D is a finite

set, we say that D has finite support. In this case, the sum (1) is a finite sum.

3.2. Principal Divisors

Let R = (T , A) be a Riemann surface. A principal divisor on R, written ( f ), is the divisor D: R → Z corresponding

to the order function for a meromorphic function f on R that is not identically zero:

( f ) =
p ∈ T
Σ (ordp f ) p.
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In other words, ( f ) is the function p → ordp f . Note that ( f ) is not defined for the function f that is identically

zero, because the order of this function at every point is ∞, which is not an integer.

Let ( f ) and (g) be principal divisors on R, and let p be a point in T . For any chart Ci containing p, fi has a Laurent

series expansion zm P at pi and gi has a Laurent series expansion znQ at pi , where P and Q are power series with

nonzero constant terms.

Divisors of products: fi gi has a Laurent series expansion zm+n PQ at pi . Since PQ has a nonzero constant term, the

order of fi gi at pi is m + n. Therefore we have ( f + g)( p) = ( f )( p) + (g)( p) for every p, i.e.,

( fg) = ( f ) + (g). (2)

Divisors of inverses: 1/ fi has a Laurent series expansion z−m H , where H = 1/P is a power series with a nonzero

constant term. See Calculus Over the Complex Numbers, § 4.1 and § 4.2. Since H has a nonzero constant term, the

order of 1/ fi at pi is −m. Therefore we have (1/ f )( p) = −( f )( p) for every p, i.e.,

(1 / f ) = −( f ) (3)

Divisors of ratios: From (2) and (3) and the definition of D1 − D2 we immediately obtain

( f /g) = ( f ) − (g) (4)

3.3. Canonical Divisors

Let R = (T , A) be a Riemann surface. A canonical divisor on R, written (ω ), is the divisor corresponding to the

order function for a meromorphic one form ω on R that is not identically zero:

(ω ) =
p ∈ T
Σ (ordp ω ) p.

In other words, (ω ) is the function p → ordp ω . For the same reason stated in § 3.2, (ω ) is not defined for the mero-

morphic one form ω that is identically zero.

Let ω = {gi dz} be a meromorphic one form on R, and let f be a meromorphic function on R. By the definition of

the vector space M (1)(R) over the field M(R) in § 2.1, we can multiply f by ω , yielding the meromorphic one form

f ω . By this definition, the order of f ω at a point p is the order of fi gi at p. Further, the order of ω at p is the order

of gi at p. Therefore by the argument made in § 3.2, we obtain the formula

( f ω ) = ( f ) + (ω ). (5)

Principal and canonical divisors are further related in the following way:

Proposition: Let R = (T , A) be a Riemann surface. Let ω and χ be meromorphic one forms on R, with ω not

identically zero. Then there exists a unique meromorphic function f on R such that χ = f ω .

Proof: Let ω = {gi dz} and χ = {hi dz}. For each chart Ci = (Ui , φ i), let fi be the meromorphic function hi /gi on

φ i(Ui). We wish to show that f = { fi} is a meromorphic function on R. For any pair of charts Ci and C j , we hav e

φ *
ij f j =

h j φ ij

g j φ ij

.

Because φ ′ij(z) ≠ 0 on its domain of definition, we can write

φ *
ij f j =

(h j φ ij)φ ′ij
(g j φ ij)φ ′ij

.

Then by the definitions of ω , χ , and fi , we hav e

φ *
ij f j =

hi

gi

= fi .

Thus f is a meromorphic function on R that satisfies the statement of the proposition. From the construction, it is

clear that f is unique.



The Riemann-Roch Theorem Page 9

Corollary: Let R = (T , A) be a Riemann surface. Let ω be a meromorphic one form on R, and let g be a noncon-

stant meromorphic function on R. Then there exists a unique meromorphic function f on R such that

ω = f dg = { fi dgi}.

Proof: From § 4.3 of Complex Charts on Topological Surfaces, we know that if g is holomorphic, then

dg = {dgi} = {g′i dz} is a one form on R. The same proof goes through when g is meromorphic. Because g is non-

constant, dg ≠ 0. The result then follows from the proposition.

3.4. Linear Equivalence of Divisors

Let R be a Riemann surface, and let D1 and D2 be divisors on R. We say that D1 and D2 are linearly equivalent

and write D1 ∼ D2 if D1 − D2 is a principal divisor, i.e., if there exists a meromorphic function f on R such that

D1 − D2 = ( f ).

Proposition: Let R = (T , A) be a Riemann surface, and let (ω1) and (ω2) be canonical divisors on R. Then

(ω1) ∼ (ω2).

Proof: The result follows from formula (5) and the proposition stated in § 3.3, together with the observation that nei-

ther ω1 nor ω2 can be identically zero.

3.5. The Degree of a Divisor on a Compact Riemann Surface

Let R = (T , A) be a Riemann surface, and let D: R → Z be an integer-valued divisor with finite support. We define

the degree of D, written deg D, as follows:

deg D =
p ∈ T
Σ D( p). (6)

Note that because D has finite support, (6) is a finite sum.

Principal divisors: Let R be a compact Riemann surface, and let f be a meromorphic function on R. Then the set

of points p where f has nonzero order is finite, so the degree of the principal divisor ( f ) is well-defined. Further,

we have

deg ( f ) = 0.

This statement is exactly the result proved in § 3.6 of Holomorphic Maps Between Riemann Surfaces and again in

example 3 of § 1.4 of this document.

Canonical divisors: On a compact Riemann surface, the degree of a canonical divisor (ω ) is also well-defined. We

now prove sev eral results about the degree of a canonical divisor on a compact Riemann surface.

Proposition: Let R be a  compact Riemann surface, and let (ω1) and (ω2) be canonical divisors on R. Then

deg (ω1) = deg (ω2).

Proof: By 3.4, there exists a principal divisor ( f ) such that (ω2) = (ω1) + ( f ). By the previous result, deg ( f ) = 0.

Since the degree function is linear, the result follows.

Theorem: Let R be a compact Riemann surface of genus g. If R has a nonconstant meromorphic function, then R

has a canonical divisor with degree 2g − 2.

Proof: Let R = (T , A), let g be the meromorphic function, and let f : R → C∞ be the associated holomorphic map to

the Riemann sphere. We will use f to construct a canonical divisor on R with degree 2g − 2.

Let ω be the meromorphic one form on C∞ given by ω1 = dz and ω2 = −(1 /z2) dz. As discussed in § 1.3, f has the

chart inclusion property; and by translating we can choose corresponding charts with corresponding centers. There-

fore we may construct a pullback f *ω with corresponding centers.

Now consider the degree of the canonical divisor ( f *ω ). By the proposition in § 1.3, we have

deg ( f *ω ) =
p ∈ T
Σ ordp f *ω =

p ∈ T
Σ [(1 + ord f (p) ω ) multp f − 1].

The order of ω is −2 at ∞ and zero everywhere else. Therefore we have

deg ( f *ω ) =
p ∈ T − f −1(∞)

Σ (multp f − 1) +
p ∈ f −1(∞)

Σ (−multp f − 1).
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Rearranging terms, we have

deg ( f *ω ) =
p ∈ T
Σ (multp f − 1) +

p ∈ f −1(∞)
Σ −2 multp f . (7)

By the Hurwitz formula (Holomorphic Maps Between Riemann Surfaces, § 3.7) with g2 = 0, the first term of (7) is

2g − 2 + 2 deg f . By the definition of the degree of a holomorphic map (Holomorphic Maps Between Riemann Sur-

faces, § 3.5), the second term of (7) is −2 deg f . Adding these terms yields the result.

Corollary 1: Let R be a compact Riemann surface of genus g. If R has a nonconstant meromorphic function, then

all canonical divisors on R have degree 2g − 2.

Proof: This statement follows from the theorem and from the proposition.

Corollary 2: Let R be a compact Riemann surface of genus g. If R has at least two distinct nonconstant meromor-

phic one forms, then all canonical divisors on R have degree 2g − 2.

Proof: This statement follows from the proposition stated in § 3.3 and from Corollary 1.

3.6. The Spaces L(D) and L(1)(D)

The partial ordering on divisors: Let ZR be the set of all integer-valued divisors on R, i.e., the set of all divisors

D: T → Z. As noted in § 3.1, ZR is an additive group. We make S into a partially ordered set as follows. If D1 and

D2 are two elements of ZR, then we say that D1 ≥ D2 if and only if D1( p) ≥ D2( p) for all p in T . From the defini-

tion of the element zero of ZR, it follows that D ≥ 0 if and only if D( p) ≥ 0 for all p in T . As usual, we say

D1 ≤ D2 if and only if D2 ≥ D1.

The space L(D): Let D be an integer-valued divisor on R. We define L(D) to be the set consisting of (a) all

nonzero meromorphic functions f on R such that ( f ) ≥ −D and (b) the zero function on R.

One may ask why the definition of L(D) uses −D instead of D. The motivation seems to be that we are primarily

interested in bounding poles.

Fix an integer-valued divisor D, a meromorphic function f in L(D), and a point p in T . Let n = D( p). Then we

have the following:

1. If n > 0, then f may or may not have a pole at p, and if it does, then the pole is of order no greater than n.

2. If n = 0, then f does not have a pole at p. It may or may not have a zero at p.

3. If n < 0, then f has a zero at p of at least order n.

For any integer-valued divisor D on R, L(D) is a subset of M(R), and it is closed under addition and under multipli-

cation by a complex number. Therefore L(D) is a vector space over C and is a subspace of M(R).

The space L(0) consists of exactly the meromorphic functions on R with no poles, i.e., the holomorphic functions on

R. Therefore we have L(0) = O(R). When R is compact, we have that O(R) consists of the constant functions on R.

See Holomorphic Maps Between Riemann Surfaces, § 3.2. In this case, we have L(0) = C.

Let D1 and D2 be integer-valued divisors on R such that D1 ∼ D2. Then L(D1) and L(D2) are isomorphic as vector

spaces. Indeed, we have D1 − D2 = (g) for some meromorphic function g, and for any f in L(D1), by equation (2)

we have

(gf ) = (g) + ( f ) ≥ (g) − D1 = −D2,

so (gf ) is an element of L(D2). Therefore multiplication by g is a linear map from L(D1) to L(D2). Since

D2 − D1 = −(g) = (1 /g), by the same argument multiplication by 1/g is a linear map from L(D2) to L(D1). The

composition of these two linear maps the identity map, so each map is an isomorphism.

The space L(1)(D): Let D be an integer-valued divisor on R. We define L(1)(D) to be the set consisting of (a) all

nonzero meromorphic one forms ω on R such that (ω ) ≥ −D and (b) the zero one form on R. L(1)(D) is a vector

space over C and is a subspace of M (1)(R).

The space L(1)(0) consists of exactly the meromorphic one forms on R with no poles, i.e., the holomorphic one

forms on R. Therefore we have L(1)(0) = O(1)(R).

Let D1 and D2 be integer-valued divisors on R such that D1 ∼ D2. Then L(1)(D1) and L(1)(D2) are isomorphic as

vector spaces. The argument given above for L(D) goes through, except that we use equation (5) instead of equation
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(2).

4. Laurent Polynomials

To state and prove the Riemann-Roch theorem, we will need to consider finite prefixes of Laurent series. Such a

prefix is a finite series

n

j=m
Σ a j z

j , (1)

where m and n are integers. We will call such a finite series a Laurent polynomial. Equivalently, a Laurent poly-

nomial is a Laurent series in which the coefficients a j are zero for all j greater than some integer n.

Fix a Laurent polynomial P. We say that P is bounded by the integer n if the coefficients of P are all zero at

indices n and greater.

4.1. Laurent Series and Polynomial Divisors

First we consider mappings that associate Laurent series and Laurent polynomials to the points of a Riemann sur-

face.

Laurent series divisors: Let L denote the set of all Laurent series. It is a complex vector space, i.e., a vector space

over C.

Let R = (T , A) be a Riemann surface, and fix a mapping Λ: T → L. We call Λ a Laurent series divisor. To each

point p in T , it assigns a Laurent series Λ( p). The set of all Laurent series divisors on R is a complex vector space,

which we denote LR.

We may embed M(R), the space of meromorphic functions on R, in LR as follows. For each point p in T , choose a

chart C p of A centered at p. Then for each meromorphic function f on R, f p has a Laurent series expansion l p at

p. The mapping Λ f = p → l p is a Laurent series divisor on R, and f → Λ f is an injective map from M(R) to LR.

The mapping f → Λ f is not surjective, because in general we do not get a meromorphic function on R by assigning

arbitrary Laurent series to points of R. For example, the divisor Λ(0) = 0, Λ( p ≠ 0) = 1 on the Riemann sphere does

not correspond to any meromorphic function.

Laurent polynomial divisors: Let P denote the set of all Laurent polynomials. It is a complex vector space and a

subspace of L.

Let R = (T , A) be a Riemann surface, and fix a mapping Π: R → P. We call Π a Laurent polynomial divisor. To

each point p in T , it assigns a Laurent polynomial Π( p).

Let Π be a Laurent polynomial divisor on R, and let D be an integer-valued divisor on R. We say that Π is bounded

by D if for each p in T , the Laurent polynomial Π( p) is bounded by the integer D( p).

The set of all Laurent polynomial divisors on R is a complex vector space, which we denote PR. PR is a subspace of

LR. The set of all Laurent polynomial divisors on R with finite support is a subspace of PR, which we denote PR
0 .

4.2. Truncation Maps

Next we consider mappings that zero out the coefficients of a Laurent series after a certain point, converting them to

Laurent polynomials. We call these maps truncation maps.

Truncation by an integer: Let n be an integer. We define the truncation map tn: L → P as follows:

∞

j=m
Σ a j z

j →
n−1

j=m
Σ a j z

j .

That is, for any Laurent series l, tn(l) is the Laurent polynomial consisting of l with the terms of order n and higher

zeroed out.

Truncation by a divisor: Let R = (T , A) be a Riemann surface, and let D be an integer-valued divisor on R. We

define the truncation map tD: LR → PR as follows:

tD(Λ) = ( p → t−D(p)(Λ( p)).

That is, for any Laurent series divisor Λ, tD(Λ) is the Laurent polynomial divisor that maps p to the Laurent series
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Λ( p) with the terms of order −D( p) and higher zeroed out.

The truncation map tD is a linear map, so if V is any subspace of LR, then tD(V ) is a complex vector space. In par-

ticular, tD(PR
0 ) is a complex vector space. It contains exactly the Laurent polynomial divisors on R that have finite

support and that are bounded by −D.

4.3. The Vector Space H1(D)

Let R be a compact Riemann surface, and let D be an integer-valued divisor on R with finite support. As observed

in § 4.1, we may treat M(R) as a subspace of LR. Therefore, we may apply the truncation map tD to M(R) to obtain

the vector space tD(M(R)). Further, if Λ f is the Laurent series divisor corresponding to a meromorphic function f

on R, then tD(Λ f ) has finite support. This is because (1) at all but a finite number of points p we have D( p) = 0, so

tD(Λ f )( p) = t0(Λ f ( p));

and (2) at all but a finite number of points p we have that Λ f ( p) has no negative terms, so t0(Λ f ( p)) = 0. Therefore,

we have

tD(M(R)) ⊆ tD(PR
0 ),

and we may construct the quotient space tD(PR
0 )/tD(M(R)). This is the space of Laurent polynomials of tD(PR

0 ) sub-

ject to the relation that two polynomials are equivalent in the quotient space if they differ by an element of

tD(M(R)). We call this quotient space H1(D), i.e., we define

H1(D) = tD(PR
0 )/tD(M(R)).

H1(D) measures the amount by which tD(M(R)) fails to equal tD(PR
0 ).

The name H1(D) comes from the concept of cohomology, which you can read about in my paper Definitions for

Commutative Algebra. Cohomology is a general way to study sequences of maps in which the image of one map

lies in the kernel of the next map. Such sequences are called cochain complexes.

In terms of cohomology, for a fixed Riemann surface R and a fixed integer-valued divisor D on R, we can write the

following sequence of maps:

0 → L(D) → M(R)
tD→ tD(PR

0 ) → 0. (2)

Here 0 means the trivial vector space consisting of just the element zero. The first two arrows are the inclusion

maps, and the last arrow is the map taking every element to zero. In the sequence (2), the image of each arrow lies

in the kernel of the next arrow. In particular, L(D) is exactly the kernel in M(R) of tD, because a meromorphic func-

tion f has order at least −D( p) at a point p if and only if its Laurent series at p has all zero coefficients below order

−D( p), i.e., the truncation of its Laurent series at p under t−D(p) is zero. Therefore, the sequence (2) is a cochain

complex. The space H1(D) is the cohomology space associated with tD(PR
0 ), i.e., the kernel tD(PR

0 ) of the map

tD(PR
0 ) → 0 modulo the image tD(M(R)) of the map M(R)

tD→ tD(PR
0 ).

4.4. The Dimensions of L(D) and H1(D)

Let D be an integer-valued divisor with finite support on a compact Riemann surface. We now assert two important

facts about the spaces L(D) and H1(D). First, we assert a result about the dimension of H1(D):

Proposition 1: Let R be a compact Riemann surface, and let D be an integer-valued divisor on R with finite sup-

port. Then H1(D) is a finite-dimensional vector space over C.

For the proof, see [Miranda 1995], VI, Proposition 2.7.

Next we assert a result about the the dimension of L(D):

Proposition 2: Let R be a compact Riemann surface, and let D be an integer-valued divisor on R with finite sup-

port. Then L(D) is a finite-dimensional vector space over C, and we have

dim L(D) − deg D = dim H1(D) − dim H1(0) + 1.

To prove Proposition 2, we need a lemma.
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Let D1 and D2 be integer-valued divisors on R = (T , A) with finite support, and suppose D1 ≤ D2. Let p1 and p2 be

Laurent polynomials in tD1
(PR

0 ) that are equivalent in H1(D1). This means that p1 − p2 lies in tD1
(M(R)). Because

D1 ≤ D2, at each point q of T , tD2
zeros out at least as many coefficients as tD1

, so tD2
( p1 − p2) = tD2

( p1) − tD2
( p2)

is an element of tD2
(M(R)). Therefore tD2

( p1) is equivalent to tD2
( p2) in H1(D2), and tD induces a well-defined

map

hD1,D2
: H1(D1) → H1(D2).

We now assert a lemma about the kernel of this map hD1,D2
:

Lemma: Let R be a compact Riemann surface. Let D1 and D2 be integer-valued divisors on R with finite support,

and suppose D1 ≤ D2. Then the kernel of the map hD1,D2
is finite-dimensional over C, and we have

dim (ker hD1,D2
) = (dim L(D1) − deg D1) − (dim L(D2) − deg D2).

For the proof, see [Miranda 1995], VI, Lemma 2.3.

Proof of Proposition 2: Since H1(D1) and H1(D2) are finite-dimensional (Proposition 1), by elementary linear alge-

bra we have

dim (ker hD1,D2
) = dim H1(D1) − dim H1(D2).

As observed in § 3.6, L(0) = C, so dim L(0) = 1. If 0 ≤ D, then by the lemma with D1 = 0 and D2 = D we have

dim L(D) − deg D = −dim (ker h0,D) + (dim L(0) − deg 0))

= −(dim H1(0) − dim H1(D)) + (1 − 0)

= dim H1(D) − dim H1(0) + 1.

Otherwise by the lemma with D1 = D and D2 = 0 we hav e

dim L(D) − deg D = dim (ker hD,0) + (dim L(0) − deg 0))

= dim H1(D) − dim H1(0) + (1 − 0)

= dim H1(D) − dim H1(0) + 1.

5. Serre Duality

In this section, we assert a fact called Serre duality that is key to the proof of the Riemann-Roch theorem. Let R be

a compact Riemann surface, and let D be an integer-valued divisor on R with finite support. We denote by H1(D)*

the complex vector space of linear maps λ : H1(D) → C. This space is called the dual space of H1(D). Recall from

§ 3.6 that L(1)(−D) is the vector space of meromorphic one forms ω on R such that (ω ) ≥ D. Serre duality asserts

the existence of an isomorphism between L(1)(−D) and H1(D)*.

5.1. The Residue Map

To formulate Serre duality, we need to define a map

Res: L(1)(−D) → H1(D)* (1)

called the residue map. To do this, we will need a lemma. In stating this lemma, we will write fa to denote the

Laurent series expansion at a point a of a meromorphic complex function f .

Lemma: Let U be an open subset of C. Fix a point a in U  and an integer n. Let f be a meromorphic function on

U, and let ω be a meromorphic one form on U such that orda ω ≥ n. Then

Resa f ω = Resa t−n( fa)ω .

Proof: Let ω = g dz. By definition, Resa f ω is the coefficient of the 1/(z − a) term in the Laurent series l = fa ga,
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where the product is the Cauchy product of the Laurent series. By assumption, the lowest power of (z − a) appear-

ing in ga with a nonzero coefficient is greater than or equal to n. Therefore the only terms of fa that can contribute

to the residue after multiplication by a term of ga are the terms of order less than −n, i.e., the terms of t−n( fa).

Now we define a map

Res: L(1)(−D) → tD(PR
0 )*

as follows. Let R = (T , A) be a compact Riemann surface. For each point p in T , choose a chart C p centered at p.

Define

Res(ω ) = (Π →
p ∈ T
Σ Res0 Π( p)ω p). (2)

In other words, for any one form ω on R with (ω ) ≥ D, Res(ω ) is the linear map that takes a Laurent polynomial

divisor Π with finite support and bounded by −D to the sum over all points p of the residues at zero of the products

Π( p)ω p. Note that the sum is finite because (a) ω has negative Laurent series terms at finitely many points and (b)

Π has finite support.

Since H1(D) = tD(PR
0 )/tD(M(R)), the map (2) induces a map (1) if we have

Res(ω )(tD(Λ f )) = 0 (3)

for all meromorphic functions f on R. We shall now show that (3) holds. By definition we have

Res(ω )(tD(Λ f )) =
p ∈ T
Σ Res0 t−D(p)( f p 0)ω p,

where f p 0 denotes the Laurent series expansion at zero of the local function f p on the chart C p centered at p. By

assumption ord0 ω p ≥ D( p) at every point p, so the conditions of the lemma are satisfied, and we have

Res(ω )(tD(Λ f )) =
p ∈ T
Σ Res0 f pω p

=
p ∈ T
Σ Res0 ( f ω )p

=
p ∈ T
Σ Resp f ω . (4)

But the residue theorem (§ 1.4) says exactly that the right-hand side of (4) is zero. This establishes (3), as required.

5.2. The Serre Duality Theorem

The Serre duality theorem says that the map Res defined in the previous section is an isomorphism:

Theorem (Serre Duality): Let R be a compact Riemann surface, and let D be an integer-valued divisor on R with

finite support. Then the map

Res: L(1)(−D) → H1(D)*

is an isomorphism of complex vector spaces.

For the proof, see [Miranda 1995], VI, Theorem 3.3.

Corollary: Let R and D be as in the statement of the theorem. Then L(1)(−D) and H1(D) are isomorphic as com-

plex vector spaces.

Proof: H1(D) is a finite-dimensional complex vector space (§ 4.4), so it is isomorphic to Cn, where n = dim H1(D).

Cn is isomorphic to (Cn)* via the map

u → (v → u ⋅ v).

Compare the discussion of linear products in The General Derivative, § 4.1. These facts, together with the theorem,

establish the result.
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6. The Riemann-Roch Theorem

We now hav e all the theory we need to state and prove the Riemann-Roch theorem.

Theorem (Riemann-Roch): Let R be a compact Riemann surface of genus g that has at least one nonconstant

meromorphic function. Let D be an integer-valued divisor on R with finite support, and let K be a canonical divi-

sor on R. Then

dim L(D) − deg D = dim L(K − D) − g + 1.

To prove the theorem, we need a lemma.

Lemma: Let R, D, and K be as in the statement of the theorem. Then L(1)(D) and L(D + K ) are isomorphic as

complex vector spaces.

Proof: Let K = (ω ), where ω is a meromorphic one form on R. Define a map µK : L(D + K ) → M (1)(R) as follows:

µK ( f ) = f ω .

We hav e

( f ω ) + D = ( f ) + (ω ) + D

= ( f ) + K + D

≥ 0,

since f lies in L(D + K ). Therefore f ω lies in L(1)(D), i.e.,

µK (L(D + K )) ⊆ L(1)(D).

Now choose a meromorphic one form χ in L(1)(D). Because (ω ) is defined, ω is not identically zero, and so by the

proposition in § 3.3, there exists a unique meromorphic function f on R such that χ = f ω . We hav e

( f ) + D + K = ( f ) + D + (ω )

= ( f ω ) + D

= (χ ) + D

≥ 0,

since χ lies in L(1)(D). Therefore f lies in L(D + K ), and µK ( f ) = χ . This shows that

L(1)(D) ⊆ µK (L(D + K )).

Therefore the image of µK is L(1)(D). Further, µK is injective by the uniqueness of f and it is linear, so it induces an

isomorphism between its domain and its image.

Proof of the theorem: By § 4.4, Proposition 2, it suffices to prove the following:

i. dim H1(D) = dim L(K − D).

ii. dim H1(0) = g.

(i) By the lemma, we have

dim L(K − D) = dim L(1)(−D). (1)

By the corollary to the Serre duality theorem (§ 5.2), we have

dim L(1)(−D) = dim H1(D). (2)

(1) and (2) establish (i).

(ii) By Corollary 1 of § 3.5, we have

deg K = 2g − 2. (3)
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By (i) we have

dim H1(K ) = dim L(K − K ) = dim L(0) = 1 (4)

and

dim H1(0) = dim L(K − 0) = dim L(K ). (5)

By Proposition 2 of § 4.4 with D = K , we hav e

dim L(K ) − deg K = dim H1(K ) − dim H1(0) + 1. (6)

Substituting (3), (4), and (5) into (6) yields

dim H1(0) − (2g − 2) = 1 − dim H1(0) + 1. (7)

Solving for dim H1(0) in (7) yields (ii).

Corollary: Let R, D, and K be as in the statement of the theorem. Then

dim H1(0) = dim L(1)(0) = dim L(K ) = g.

Proof: In the proof of the theorem, we showed that dim L(K ) = dim H1(0) and dim H1(0) = g. From the lemma,

we have dim L(1)(0) = dim L(0 + K ) = dim L(K ).
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