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In discussions of complex analysis, one encounters differential forms such as

f dz + g d
_
z.

Typically the use of the symbol d
_
z is justified by appealing to the formulas
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and writing down the following partial derivatives, where f (x, y) is a differentiable function from R2 to C:
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See, e.g., [Miranda 1995].

While this method has a certain plausibility, it is not obviously justified. The notation seems intentionally ambigu-
ous: does

_
z mean, as it does elsewhere, the complex conjugate of the complex number z? If so, how can we treat

_
z

as an independent variable and write ∂ f /∂_
z? If not, how can we write

_
z = x − iy? Also, the variable

_
z does not

appear in the definition of the function f . So how is it even valid to take a derivative of f with respect to
_
z? One

gets the sense that important details are being swept under the rug.

The purpose of this paper is to look under the rug and determine what is really going on. This paper builds on my
papers The General Derivative, Integration in Real Vector Spaces, Calculus over the Complex Numbers, and Com-

plex Charts on Topological Surfaces.

A note on writing derivatives: In this paper, we will use the notation for derivatives dev eloped in Integration in

Real Vector Spaces and Calculus over the Complex Numbers. For example, if f : R2 → C is a differentiable function
of the real variables (x, y), then (1) Dx f and Dy f are partial derivatives that take pairs of real numbers to complex
numbers, and (2) df is the derivative of f , i.e., the function that takes a pair of real numbers (x, y) to the linear map

Dx f (x, y) dx + Dy f (x, y) dy

from R2 to C. Dx f is an alternate notation for ∂ f /∂x.

A note on the chain rule: We will avoid using the “mnemonic” chain rule df /dy = df /dx ⋅ dx/dy, as represented in
the partial derivatives (1). This rule is easier to remember than it is to justify. For example, it is not entirely obvious
that the formulas (1) are even valid, because on its face the mnemonic chain rule applies to ordinary derivatives, not
partial derivatives. Instead, we will use the general chain rule expressed as a composition of linear maps, as pre-
sented in § 7.5 of The General Derivative. This rule is easy to justify because it completely general and works
exactly the same way in every case. Before reading this paper, you should make sure you understand this version of
the chain rule.

1. The Motivation for Using d
_
z

We begin with the motivation for using d
_
z to write differential forms. The basic idea is that using dz and d

_
z instead

of dx and dy avoids some notational awkwardness.
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One forms over R2: Let f and g be differentiable functions from R2 to C, and consider the differential one form

ω (x, y) = f (x, y) dx + g(x, y) dy. (1)

ω is a map from R2 to L(R2, C), where as usual L(R2, C) is the space of linear maps from R2 to C. The form (1)
straightforwardly extends the forms ω : R2 → L(R2, R) that we considered in Integration in Real Vector Spaces. We
have just replaced R with C in the rightmost position. The form (1) also extends the forms

ω (z) = f (z) dz (2)

that we considered in Calculus over the Complex Numbers. Indeed, when integrating the form (2) over a path
σ : [a, b] → C, we can write

σ
∫ f dz =

R R−1 σ
∫ f dz =

R−1 σ
∫ R*( f dz) =

R−1 σ
∫ ( f R) dR =

R−1 σ
∫ ( f R) (dx + i dy), (3)

where R: R2 → C = (x, y) → x + iy is the rectangular coordinate map. Equation (3) is just integration in rectangular
coordinates, as discussed in § 3.4 of Calculus over the Complex Numbers. If we write the one form on the right of
(3) as

ω = ( f R) dx + i ( f R) dy,

then we see that this one form is a special case of the one form (1). In this document, we will use the symbol
Ω1(R2) to denote the vector space over C of one forms (1).

Constructing pullbacks: Recall that in the study of complex manifolds, we need to construct pullbacks of the form

φ *ω = ( f φ )φ ′ dz,

where ω = f dz is a complex one form, and φ is a biholomorphic function defined on some open subset of C. See
Complex Charts on Topological Surfaces. To employ one forms (1) in this context, we need to develop the analo-
gous construction for these forms. Let us first do this in a straightforward way, using dx and dy. This will be some-
what messy; then we will see how introducing the d

_
z notation can help clean up the mess.

Suppose we are given a one form ω = f dx + g dy in Ω1(R2) and a holomorphic function φ :U ⊆ C → C. We can’t
directly pull back ω via φ , because the types don’t match. Instead, we must pull back via the function

Φ: R−1(U) ⊆ R2 → R2 = R−1 φ R.

Recall that in § 2.4 of Calculus over the Complex Numbers we called Φ the real vector field associated with the
complex function φ . We also showed that, because φ is holomorphic, the function Φ(x, y) = (Φx(x, y), Φy(x, y)) sat-
isfies the Cauchy-Riemann equations, i.e.,

DxΦx = DyΦy DxΦy = −DyΦx .

Let us compute the pullback of ω via Φ, i.e., the one form Φ*ω . First, note that

R−1 = z → 


z + _
z

2
,

z − _
z

2i



. (4)

You can see this by plugging in R(x, y) = x + iy for z in the right-hand side of (4); after collecting terms, the result is
(x, y). Next, applying (4) in the definition of Φ, we hav e

Φ = (Φx , Φy) =




φ R +
______
φ R

2
,

φ R −
______
φ R

2i




. (5)

Now let us compute the derivatives dΦx and dΦy of the coordinate functions of Φ. First we compute the partial de-
rivatives of the terms in (5). By the chain rule we have

Dx(φ R) = (φ ′ R) Dx R = (φ ′ R) Dx(x + iy) = φ ′ R

Dy(φ R) = (φ ′ R) Dy R = (φ ′ R) Dy(x + iy) = i (φ ′ R). (6)



The Notation d
_
z in Complex Analysis Page 3

The conjugate function z → _
z is linear in R, because for any real number r we have

___
rz = _

r
_
z = r

_
z.

Therefore, by the rule for the derivative of a composition with a linear map,1 for any differentiable function
ψ :U ⊆ R → C we have

d
__
ψ =

____

dψ , (7)

where we write
__
ψ to mean x →

_____

ψ (x). Then by (6) and (7) we have

Dx(
______
φ R) =

__________

Dx(φ R) =
________

φ ′ R

Dy(
______
φ R) =

__________

Dy(φ R) = −i
________

(φ ′ R). (8)

Using (6) and (8) we can compute the derivatives

dΦx = DxΦx dx + DyΦx dy

=
φ ′ R +

_______

φ ′ R

2
dx +

i(φ ′ R) − i
_______

(φ ′ R)

2
dy

=
φ ′ R +

________

φ ′ R

2
dx +

φ ′ R −
________

φ ′ R

2
i dy

=
φ ′ R

2
(dx + i dy) +

_______

φ ′ R

2
(dx − i dy) (9)

and

dΦy = DxΦy dx + DyΦy dy

=
φ ′ R −

_______

φ ′ R

2i
dx +

i(φ ′ R) + i
_______

(φ ′ R)

2i
dy

=
φ ′ R −

________

φ ′ R

2i
dx +

φ ′ R +
________

φ ′ R

2i
i dy

=
φ ′ R

2i
(dx + i dy) −

_______

φ ′ R

2i
(dx − i dy). (10)

Now we can compute the pullback Φ*ω . From the definition of the pullback, we have

(Φ*ω )(x, y) = ω (Φ(x, y)) dΦ(x, y)

= [( f Φ) dx + (g Φ) dy] (dΦx , dΦy).

= ( f Φ) dΦx + (g Φ) dΦy. (11)

Putting (9) and (10) together with (11) yields

Φ*ω =




f Φ
2

+
g Φ

2i





(φ ′ R) (dx + i dy) +




f Φ
2

−
g Φ

2i





(
________

φ ′ R ) (dx − i dy). (12)

Simplifying the notation: Notice the following:

1. We hav e factored (12) so that the terms φ ′ R and
________

φ ′ R each appear once. This factoring is convenient; it
cuts down on the mess that would result if we grouped the factors of dx and dy.

1 See The General Derivative, § 7.6.
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2. The factoring in item 1 has caused factors dx + i dy and dx − i dy to appear.

Notice also that we may factor one forms (1) in the same way. That is, we can write

ω = f dx + g dy =




f

2
+

g

2i





(dx + i dy) +




f

2
−

g

2i





(dx − i dy). (13)

Distributing factors and canceling terms on the right-hand side of (13) yields the left-hand side.

Further, if we write F = f /2 + g/2i and G = f /2 − g/2i, then we can write

ω = F (dx + i dy) + G (dx − i dy) (14)

and

Φ*ω = (F Φ)(φ ′ R) (dx + i dy) + (G Φ)(
_______

φ ′ R) (dx − i dy), (15)

and these forms are considerably simpler than (12) and (13).

This factoring is the motivation for using d
_
z: the factor dx + i dy becomes dz, and the factor dx − i dy becomes d

_
z.

However, in this document we will not introduce the symbol d
_
z until we properly explain what it means and why we

are justified in using it. We do this in the next section.

2. The Justification for Using d
_
z

To justify the notation d
_
z, we need to understand how to convert a differentiable function of the real variables x and

y into a differentiable function of the complex variables z and
_
z. To start, let each of Z1 and Z2 be a copy of C, con-

sidered as a real vector space. This means that the vectors are complex numbers, addition is in C, the field of scalars
is R, and scalar multiplication is multiplication of real numbers r times complex numbers z. Let Z be the real vector

space Z1 × Z2. Now giv e each Zi the same norm as C, i.e., |z| = √ z _
z, and give Z the same norm as C2, i.e.,

|(z1, z2)| = √ |z1|2 + |z2|2. This construction makes each of Z1, Z2, and Z into a normed vector space over R.

Next, consider the subset W of Z given by

W = {(z,
_
z) | z ∈ C}. (1)

That is, W contains all and only pairs of complex numbers (z1, z2) such that z2 is the complex conjugate of z1, and
vice versa. W is also a normed real vector space. It inherits its vector space operations and its norm from Z . W is
closed under vector addition because

(z1,
__
z1) + (z2,

__
z2) = (z1 + z2,

__
z1 + __

z2) = (z1 + z2,
________
z1 + z2).

W is closed under scalar multiplication, because

r(z,
_
z) = (rz, r

_
z) = (rz,

__
rz),

since r is a real number.

Observe that W and R2 are isomorphic as real vector spaces, via the isomorphisms

(x, y) → (x + iy, x − iy) and (z1, z2) → 


z1 + z2

2
,

z1 − z2

2i



. (2)

Observe also that if Y is a normed vector space, U ⊆ Z is an open set, and f :U ⊆ Z → Y is a differentiable func-
tion, then the restriction of f to V = W ∩ U is differentiable, and the derivative of the restriction is the restriction of
the derivative. That is,

d( f |V ) = df |V . (3)

This fact is easily established by applying the restriction to both sides of the definition of the derivative

df (z + h) = f (z) + df (z)(h) + o(h),

where z = (z1, z2) ∈ U , h = (h1,h2) ∈ Z , and z + h ∈ U .

We now hav e all the theory we need to make sense of the notation d
_
z:
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1. Formula (1) explains the use of z and
_
z as variables. This use is a kind of shorthand. In fact the variables are

elements of the real vector space W , i.e., pairs w = (z1, z2) subject to the restriction that w = (z,
_
z) for some

complex number z. The shorthand notation overloads
_
z to mean both “the complex conjugate of the complex

number z” (its usual meaning in complex analysis) and “the second coordinate of a vector w ∈ W , which is
the complex conjugate of the first coordinate” (its specialized meaning in differential forms involving d

_
z).

2. Formula (2) shows that if we have a function f defined on a subset of R2, then by composing f with a suit-
able isomorphism we can convert f to a function defined on a subset of W , and vice versa.

3. Formula (3) explains what is actually meant by taking partial derivatives with respect to variables z and
_
z.

The partial derivatives are taken with respect to the coordinates z1 and z2 of the real vector space Z . Then the
derivatives are restricted to apply to vectors in W , i.e., vectors (z1, z2) in Z such that the complex numbers z1

and z2 are mutually conjugate.

Now that we have explained and justified the use of d
_
z in the literature, we will not actually use this notation. In my

view, whatever benefit this notation may give is outweighed by its potential to confuse. The double meaning of
_
z

described above is inherently confusing. Also confusing is the use of z to refer to the first coordinate of a vector in
W , when z usually denotes a complex number in C. Instead of using z and

_
z, we will write vectors in W as

w = (z1, z2). We will reserve z and
_
z for their original meanings, i.e., “a complex number in C” and “the complex

conjugate of z.” If you prefer the d
_
z notation, you can mentally replace z1 with z and z2 with

_
z in the rest of this

document.

3. Calculus over the Vector Space W

In this section, we show how to use the real vector space

W = {(z,
_
z) | z ∈ C}

defined in the previous section to express functions, one forms, and operations on them.

3.1. Partial Derivatives

First we use W together with the generalized chain rule to express and compute the partial derivatives (1) in the
introduction. Let f be a differentiable function from an open set U in R2 to C. Let ψ : W → R2 be the isomorphism

ψ (w) = (ψ1(z1, z2),ψ2(z1, z2)) = 


z1 + z2

2
,

z1 − z2

2i



, (1)

and let F = f ψ . Then F is a differentiable function from a subset of W to C. We wish to compute the partial de-
rivatives D1F and D2F . These are the equivalents, in our notation, of the partial derivatives ∂ f /∂z and ∂ f /∂_

z.

By the chain rule, we have

D1F(w) = df (ψ (w)) D1ψ (w)

= [Dx f (ψ (w)) dx + Dy f (ψ (w)) dy] (D1ψ1(w), D1ψ2(w))

= (Dx f ψ )(D1ψ1) + (Dy f ψ )(D1ψ2)

=
Dx f ψ

2
+

Dy f ψ
2i

=




Dx f

2
+

Dy f

2i





ψ .

A similar computation shows that

D2F =




Dx f

2
−

Dy f

2i





ψ .

These results agree with what we said in the introduction, except that here we have composed the partial derivatives
with ψ to account for the differing domains of the functions f and F .
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3.2. Holomorphic Functions

Next we establish the some basic results about the relationship between holomorphic functions defined on C and dif-
ferentiable functions defined on W .

Proposition: Let U ⊆ C be an open set, and let φ :U → C be a holomorphic function. Let π1: W → C be the map

(z1, z2) → z1

that projects onto the first coordinate of w, and let F = φ π1. Then on the domain of definition of F,

D1F = φ ′ π1 and D2F = 0.

Proof: By the chain rule, we have

D1(φ π1) = (φ ′ π1)D1π1 = φ ′ π1

D2(φ π1) = (φ ′ π1)D2π1 = 0.

Corollary: Let V ⊆ R2 be an open set, and let f : V → C be a differentiable function. Let G = f ψ , where

ψ : W → R2 is the isomorphism (1). If there exists a holomorphic function φ : R(V ) → C such that f = φ R, then

on the domain of definition of G we have

D1G = φ ′ π1 and D2G = 0.

As usual, R refers to the rectangular coordinate map (x, y) → x + iy.

Proof: If φ exists, then we have

G = φ R ψ .

R ψ is the projection function π1, so the result follows from the proposition.

In the literature, you will see this result partially stated as follows: “If f is holomorphic, then ∂ f /∂_
z = 0.” This

statement is correct if we accept the overloading of the symbol f to refer to each of the three functions f : R2 → C,
φ : C → C, and G: W → C.2

3.3. One Forms

We now return to the subject discussed in § 1, i.e., complex one forms defined on R2.

Expressing one forms: From § 2, we know that R2 and W are isomorphic as real vector spaces. Therefore, Ω1(R2),
the space of one forms f dx + g dy, is isomorphic to Ω1(W ), the space of one forms f dz1 + g dz2. The isomor-
phisms are given by

ω → ψ *ω : Ω1(R2) → Ω1(W ) and ω → (ψ −1)*ω : Ω1(W ) → Ω1(R2), (2)

where ψ : W → R2 is the isomorphism (1). The mappings in (2) are linear. For example, let a be a complex number.
Then

(ψ *(aω ))(w) = (aω )(ψ (w)) dψ (w) = a[ω (ψ (w)) dψ (w)] = a(ψ *ω )(w).

The mappings are also mutual inverses. Indeed, let ω be an element of Ω1(R2). From the pullback composition
lemma in § 2.3 of Complex Charts on Topological Surfaces, we hav e

(ψ −1)*(ψ *ω ) = (ψ ψ −1)*ω = id*ω = ω .

Now let ω be a “well-factored” one-form in Ω1(R2) of the form shown in equation (14) of § 1, i.e.,

ω = f (dx + i dy) + g (dx − i dy). (3)

Applying ψ * to ω yields

2 This kind of overloading is common in calculus notation. I hav e come to the conclusion that it is needlessly confusing and should be avoided

if possible. See the concluding remarks in § 4.
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ψ *ω = [( f ψ ) (dx + i dy) + (g ψ ) (dx − i dy)] dψ . (4)

We may represent dψ as a vector of linear maps, as follows:

dψ = 


dz1 + dz2

2
,

dz1 − dz2

2i



. (5)

Composing dx with dψ yields the first coordinate of (5), and composing dy with dψ yields the second coordinate.
Therefore after carrying out the composition and collecting terms we obtain

(dx + i dy) dψ = dz1 and (dx − i dy) dψ = dz2. (6)

Putting (6) together with (4) yields

ψ *ω = ( f ψ ) dz1 + (g ψ ) dz2. (7)

Thus the one form ω transforms into the one form ψ *ω as we expect: the factor (dx + i dy) becomes dz1, and the
factor (dx − i dy) becomes dz2.3

Integrating over paths: Given a path integral over a one form ω in Ω1(R2), we can convert it into a path integral
over a one form ψ *ω in Ω1(W ) in the usual way:

σ
∫ ω =

ψ ψ −1 σ
∫ ω =

ψ −1 σ
∫ ψ *ω .

The path σ maps a real interval [a, b] into R2, and the path ψ −1 σ maps [a, b] into W . This technique lets us do
path integration over one forms expressed in terms of dz1 and dz2, which is notationally convenient.

Constructing pullbacks: Let ω = f dz1 + g dz2 be a one form in Ω1(W ), and let φ :U ⊆ C → C be a holomorphic
function. Let π1: W → C be the function (z1, z2) → z1 that projects onto the first coordinate of w. Its inverse is
z → (z,

_
z). Let Φ be the function

Φ: π −1
1 (U) ⊆ W → W = π −1

1 φ π1.

We will compute the pullback Φ*ω . From the definitions, we have

Φ = (Φ1, Φ2) = (φ π1,
_______
φ π1).

By the proposition of § 3.2, we have

D1(φ π1) = φ ′ π1 and D2(φ π1) = 0. (8)

We claim that for any differentiable function F : W → C, the following formulas are valid:

D1(
__
F) =

_____
D2F D2(

__
F) =

_____
D1F . (9)

To justify (9), take the conjugate of both sides of the definition of the partial derivatives. For example:
________________

F(w + (h1, h2)) =
_____

F(w) + D1

______

F(w) ⋅
__

h1 +
_____

o(h1)

=
_____

F(w) + D1

______

F(w) ⋅ h2 +
_____

o(h1).

The conjugate operation converts h1 to h2, flipping the index of the partial derivative. By (8) and (9) we have

D1(
_______
φ π1) =

___________

D2(φ π1) = 0.

D2(
_______
φ π1) =

___________

D1(φ π1) =
________

φ ′ π1 (10)

Using (8) and (10) we can compute the derivatives

dΦ1 = D1Φ1 dz1 + D2Φ1 dz2 = (φ ′ π1) dz1

3 One may be tempted to argue that because z1 = x + iy and z2 = x − iy, taking derivatives yields dz1 = dx + i dy and dz2 = dx − i dy. This

statement, while true, does not establish how or why it is valid to replace dx + i dy and dx − i dy with dz1 and dz2 in a one form. To do that, we

have to use the isomorphism ω → ψ *ω , as we did in the text.
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dΦ2 = D1Φ2 dz1 + D2Φ2 dz2 = (
________

φ ′ π1 ) dz2. (11)

Now we can compute the pullback Φ*ω . After the analogous sequence of steps to (11) of § 1, we have

(Φ*ω )(w) = ( f Φ) dΦ1 + (g Φ) dΦ2. (12)

Putting (11) together with (12) yields

(Φ*ω )(w) = ( f Φ)(φ ′ π1) dz1 + (g Φ)(
________

φ ′ π1 ) dz2. (13)

Notice that (13) corresponds to (15) of § 1 in the way we would expect.

4. Concluding Remarks

My motivation for writing this paper was the nagging suspicion, upon encountering the use of d
_
z in the literature,

that something deeper was going on and was being overlooked. I wanted to figure out what that was. I think I’ve
done that.

Along the way I’ve learned several interesting details. For example, before writing this, I guessed that the calculus
associated with the notation d

_
z must be over a real vector space W of elements (z,

_
z). But I nev er knew or suspected

that the partial derivative with respect to z1 of a conjugate is the conjugate of the partial derivative with respect to z2.
Yet this is the essential fact that makes the construction of pullbacks work out in § 3.3.

In the course of writing this paper, I’v e also learned the following:

1. In mathematical writing, there are two different ways of representing function composition. I’ll call them the
“algebra way” and the “calculus way,” because the algebra way mainly occurs in writing about algebra, and
the calculus way mainly occurs in writing about calculus. The algebra way is also prevalent in statically typed
functional programming.

2. The algebra way is clear about the domains and ranges of functions. The composition of f and g is f g. It
is not f .

3. In calculus, one routinely encounters statements to the effect that “The composition of f and g is f ,” albeit
implicitly. This kind of statement is the basis of the mnemonic chain rule

df

dy
=

df

dx

dx

dy
.

In order for this rule to make sense, we have to accept that if f is a function on a domain X , then it is also a
function on any domain Y that can be mapped into X . Also, symbols like x are overloaded to mean both ele-
ments of the domain X and functions x: Y → X . We can write f (x), as if x refers to an element of the
domain of f ; and then we can write x(y), as if x is a function from Y to X .

4. The calculus way of expressing function composition is confusing, especially when the composition crosses
vector spaces, as in the case of R2 and W . It is confusing for a function f of two real variables suddenly to
become a function f of two complex variables. This confusion is also unnecessary, because we can write the
composition directly and use the generalized chain rule, as I have done in this document. The cost is a few
more function symbols, but this seems like an acceptable cost, given the increase in clarity.
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