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This paper is a supplement to my papers The General Derivative and The Inverse and Implicit Mapping Theorems.
To keep the presentation simple, those papers focused on finite-dimensional vector spaces. This paper extends the
theory to general Banach spaces, including spaces of infinite dimension (e.g., function spaces).

To read §§ 1−6 of this paper, you should be familiar with the material presented in The General Derivative. To read
§ 7, you should also be familiar with the material presented in The Inverse and Implicit Mapping Theorems.

1. Fields

We begin by defining the concept of a field, which generalizes the real numbers.

A field F is a set of elements satisfying the following rules:

1. Addition: We can add any two elements a and b of F to form the element a + b of F . Addition is associative
and commutative. It has a zero element 0 such that for any element a of F , a + 0 = 0 + a = a. For every ele-
ment a of F there is an element of F called the additive inv erse of a and written −a such that
a + (−a) = (−a) + a = 0.

2. Multiplication: We can multiply any two elements a and b of F to form the element a ⋅ b or ab of F . Multi-
plication is associative and commutative, and it distributes over addition. F has a multiplicative identity 1
such that for any element a of F , 1 ⋅ a = a ⋅ 1 = a. For every element a of F except 0, there is an element of F

called the multiplicative inv erse of a and written a−1 such that aa−1 = a−1a = 1.

Note that these are exactly the rules of addition and multiplication t we stated for the real numbers R in § 1 of The

General Derivative. By the same argument we gav e in The General Derivative, for real numbers, we can establish
that 0a = a0 = 0 for any element a of F .

Let F be a field. A norm or absolute value on F is a function that assigns to every element a of F a real number
|a|, such that the following rules are satisfied:

1. For any element a of F , |a| ≥ 0, and |a| = 0 if and only if a = 0.

2. For any two elements a1 and a2 of F , |a1a2| = |a1||a2|.

3. For any two elements a1 and a2 of F , |a1 + a2| ≤ |a1| + |a2|.

The real number |a| is called the norm of a. The last inequality is called the triangle inequality. Note that these
are exactly the rules for the norm or absolute value of a real number r that we stated in § 1 of The General Deriva-

tive. Note also that in the case of the real norm, r and |r | are both real numbers, while in the case of a field norm, a

is an element of F (not necessarily R), and |a| is a real number.

A field with a norm is called a normed field. In the theory of differentiation, the most common normed fields are
the real numbers R and the complex numbers C with their usual absolute values. The rational numbers Q with the
usual absolute value also constitute a normed field.

2. Vector Spaces

Next we define the concept of a vector space in the general setting. Let F be a field. A vector space V over F is a
set of vectors satisfying the following rules.

1. Vector addition: We can add any two vectors v1 and v2 to form the vector v1 + v2. Addition is associative
and commutative, it has a zero element 0, and each vector v has an additive inv erse −v such that
v + (−v) = −v + v = 0.
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2. Scalar multiplication: The elements of F are called the scalars of V . Giv en any scalar a and any vector v,
we can form the product av. We also write va, and this has the same meaning as av. This product satisfies the
following rules:

a. For all vectors v, 1v = v.

b. Scalar multiplication is associative. That is, if a1 and a2 are scalars and v is a vector, then
a1(a2v) = (a1a2)v.

c. Scalar multiplication distributes over addition. That is, if a1 and a2 are scalars and v1 and v2 are vec-
tors, then (a1 + a2)v = a1v + a2v and a(v1 + v2) = av1 + av2.

This is exactly the definition of a vector space that we gav e in The General Derivative, after replacing R with F in
the definition. By the same argument as for real vector spaces, we can establish that 0v = 0 for all vectors v.

Normed vector spaces: Let F be a normed field (§ 1), and let V be a vector space over F . A norm on V is a func-
tion that assigns to each vector of v a real number |v|, such that the following rules are satisfied:

1. For any vector v, |v| ≥ 0, and |v| = 0 if and only if v = 0.

2. For any scalar a and vector v, |av| = |a||v|.

3. For any two vectors v1 and v2, |v1 + v2| ≤ |v1| + |v2|.

The number |v| is called the norm of v. Again this is exactly the definition of a norm that we gav e in The General

Derivative, after replacing R with F in the definition.

A vector space V with a norm is called a normed vector space. For example, the real numbers R, the complex
numbers C, and the rational numbers Q are normed vector spaces. In practice, most applications of the theory of
differentiation occur in normed vector spaces over R or C.1

Topological vector spaces: A normed vector space is an example of a more general construct called a topological

vector space. A topological vector space V is a vector space with a topology. A topology designates certain sub-
sets of V as open sets in a way that satisfies certain rules. In a normed vector space, a set S is open if and only if,
for every vector v in S, there is a real number ε > 0  such that all vectors v′ with |v − v′| < ε lie in S. This definition
satisfies the rules for a topology, so it makes V into a topological vector space.

Other kinds of topologies are possible. In general, a topological vector space is a vector space V over a field F

together with a topology satisfying the following rules:

TVS1 For every scalar a in F , the function M(a): V → V given by M(a)(x) = ax is continuous.

TVS2 For every vector v in V , the function A(v): V → V given by A(v)(x) = v + x is continuous.

A map f : X → Y of topological spaces is continuous if, for every open set U ⊆ Y , the set f −1(U) of elements x in X

such that f (x) ∈ U is an open set. Note that this definition does not depend on the existence of a norm. It is easy to
show that, for a normed vector space, this definition of continuity is equivalent to the one given in § 3 of The Gen-

eral Derivative. It is also easy to show that the topology of a normed vector space satisfies rules TVS1 and TVS2.

3. Completeness

We define maps, limits, and continuity for normed vector spaces exactly as in § 3 of The General Derivative. In the
more general setting, we also need to define the notion of completeness. We do that in this section.

Sequences of vectors: Let V be a vector space. A sequence of vectors in V is an enumeration of vectors, one for
each natural number i = 0, 1, . . .. We use the notation {vi}i ∈ N to denote a sequence. The subscript i called the
index of the element vi of the sequence. We may also write a sequence by listing its initial elements, if the elements
repeat after a certain index, or if the elements follow a repeating pattern.

For example, consider the following sequences of real numbers:

1. {1}i ∈ N denotes the sequence 1, 1, 1, . . . that assigns the number 1 at every index i.

1 Some authors say that a normed vector space must be over R or C. Others say that a normed vector space must be over a subfield of C; this

definition includes R, C, and Q. Here we adopt the most general definition: any normed field is allowed. We just have to be mindful that an arbi-

trary normed field F may behave differently from R, C, or Q. For example, F may not be complete as a vector space over itself (§ 3), or it may

be be non-Archimedean (see https://en.wikipedia.org/wiki/Non-Archimedean_ordered_field). When we need the properties of a specific scalar

field such as R or C, we will specify it.
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2. {1/2−i}i ∈ N denotes the sequence 1, 1/2, 1/4, . . ..

3. {(−1)i}i ∈ N denotes the sequence 1, −1, 1, −1, . . ..

4. For all i in N, let π i denote the real number formed by multiplying π by 10i , taking the integer part of the
result, and dividing by 10i . Then {π i}i ∈ N denotes the sequence 3, 3.1, 3.14, 3.141, . . .  formed by adding
successive digits in the decimal representation of π .

Convergent sequences: Let V be a normed vector space, and let S = {vi}i ∈ N be a sequence. Informally, we say
that S converges to a vector v if the elements of S become arbitrarily close to v once the indices i become large
enough.2 Formally, for any ε > 0, there exists some N ≥ 0 such that |vi − v| < ε for all i ≥ N . If a sequence S con-
verges to some vector v, then we say that S converges or is convergent.

For example:

1. {1}i ∈ N converges to 1.

2. {1/2−i}i ∈ N converges to 0.

3. {(−1)i}i ∈ N does not converge.

4. {π i}i ∈ N converges to π .

Cauchy sequences: Let S = {vi}i ∈ N be a sequence. Informally, we say that S is Cauchy if the elements of S

become arbitrarily close to each other once we go far enough out in the sequence. Formally, for any ε > 0  and any
natural number N , we say that S is ε -Cauchy at N if for every i and j such that i ≥ N and j ≥ N , |vi − v j | < ε . We
say that S is Cauchy if, for any ε > 0, there is a natural number N such that S is ε -Cauchy at N .

If a sequence is convergent, then it is Cauchy. Indeed, suppose a sequence S = {vi}i ∈ N converges to v. Then for
any ε , there is a natural number N such that for all i ≥ N and j ≥ N , we hav e |v − vi | < ε /2 and |v − v j | < ε /2.
Therefore

|vi − v j | = |vi − v + v − v j | ≤ |vi − v| + |v − v j | < ε /2 + ε /2 = ε ,

so S is ε -Cauchy at N . In the third step, we have used the triangle inequality.

Complete normed vector spaces: Let V be a normed vector space over a field F . We say that V is complete if
ev ery Cauchy sequence in V converges. For example, R is complete as a normed vector space over itself, but Q is
not. To see that Q is not complete, consider the sequence S = {π i}i ∈ N. As a sequence in R, S is Cauchy and con-
verges to π . As a sequence in Q, S is Cauchy but does not converge to any element of Q.

Another normed vector space that is not complete is P[0, 1], the vector space over R of polynomial functions with
coefficients in R defined on the closed interval [0, 1] ⊆ R. There are several norms one can put on P[0, 1]. For
example, for any polynomial p(x) in P[0, 1], we can let | p(x)| be the maximum value of |p(a)| such that a lies in
[0, 1]. Then we can use the Taylor series expansion of ex in [0, 1] to construct a sequence of functions in P[0, 1] that
converge to the function ex on [0, 1], which is not a polynomial function.

A complete normed vector space is called a Banach space. Every finite-dimensional normed vector space over R or
C is a Banach space. This is why, in The General Derivative, we didn’t hav e to define or specify the property of
completeness. We worked in finite dimensions over R, so we got completeness “for free.”

An example of an infinite-dimensional Banach space over R is the space of bounded continuous functions from R to
R with the sup norm. This is the same as Example 5 from § 2 of The General Derivative, with the additional
requirement that the functions f are continuous.

Complete topological vector spaces: As with continuity, one can generalize the concept of completeness so it
doesn’t depend on having a norm. One can then define the concept of a complete topological vector space, and this
generalizes the concept of a Banach space. An important example is a Fréchet space. This is a complete topologi-
cal vector space whose topology satisfies some further conditions.3

4. Linear Maps

Bounded linear maps: In § 4.2 of The General Derivative, we defined the norm |λ | of a linear map λ from a finite-
dimensional normed vector space V over R to a finite-dimensional normed vector space W over R. We said that |λ |

2 The phrase “arbitrarily close” is a bit of mathematics jargon. It means “as close as desired” or “close to within any specified tolerance.”
3 See https://en.wikipedia.org/wiki/Fr%C3%A9chet_space.
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is the supremum of all values |λ(v)| such that |v| ≤ 1. Because λ is linear, we could also take the norm to be the
supremum of all values |λ(v)| such that |v| = 1; these definitions are equivalent. In finite dimensions over R, the
norm |λ | is well-defined for any linear map λ, because the supremum is guaranteed to exist.

In general, when V and W are normed vector spaces over a field F , the norm of a linear map λ as defined in the pre-
vious paragraph is not guaranteed to exist. When it does exist, then we say that λ is a bounded linear map.

Continuous linear maps: A bounded linear map is continuous. Indeed, let V and W be normed vector spaces over
a field F , and let λ : V → W be a bounded linear map. From § 4.2 of The General Derivative, we hav e

|λ(x)| ≤ |λ ||x| (1)

for all vectors x. Suppose we want to show that λ is continuous at v. Giv en ε > 0, let δ = ε /|λ |. Then by (1), for all
x such that |x − v| < δ , we hav e

|λ(x − v)| ≤ |λ ||x − v| < |λ |δ = |λ |(ε /|λ |) = ε ,

which was to be shown.

When F is Q, R, or C, a continuous linear map is bounded. Indeed, let V and W be normed vector spaces over a
field F , where F is Q, R, or C, and let λ : V → W be a continuous linear map. In particular, λ is continuous at zero,
so we can choose a rational number δ > 0  such that for all x such that |x| < δ , we hav e |λ(x)| < 1. Then for all x

such that |x| < 2, we hav e |xδ /2| < δ , so

|λ(xδ /2)| = |(δ /2)λ(x)| = |δ /2||λ(x)| < 1.

Therefore |λ(x)| < 2/δ when |x| ≤ 1, so λ is bounded.

Thus when we are working over Q, R, or C, a linear map is bounded if and only if it is continuous. Moreover, the
concept of a continuous linear map does not depend on the existence of a norm, so we can apply it to topological
vector spaces such as Fréchet spaces that don’t hav e norms.

Isomorphisms: Let V and W be topological vector spaces over a field F . An isomorphism from V to W is a con-
tinuous linear map λ : V → W satisfying the following conditions:

1. λ is bijective, or one-to-one. That is, for every vector w in W , there is one and only one vector v in V such
that λ(v) = w. Therefore λ has an inverse function λ−1: W → V . This is the function that takes each vector w

in W to the vector v specified above. When a linear map is bijective, we also say that it is invertible.

2. λ−1 is a continuous linear map.

When an isomorphism λ : V → W exists, then we say that V and W are isomorphic, and we write V =̃ W .

In a Banach space or Fréchet space over R or C, if a continuous linear map λ is invertible, then it is an isomorphism.
This result follows from the open mapping theorem, which says that in a Banach space or Fréchet space over R or
C, the image λ(U) of an open set U under a continuous linear map λ is an open set. Here λ(U) is the set of all ele-
ments λ(v) such that v is an element of U . The open mapping theorem is not true for general topological vector spa-
ces.

In the rest of this document, we will work in Banach spaces over R or C. In these spaces, a linear map is bounded if
and only if it is continuous, and a bounded (or continuous) linear map is an isomorphism if and only if it is invert-
ible. In the special case of finite dimensions over R or C, every normed vector space is a Banach space, and every
linear map is continuous, so every invertible linear map is an isomorphism.

The vector space L(V , W ): Let V and W be Banach spaces over F , where F is R or C. We define L(V , W ) to be
the space of continuous linear maps λ : V → W , with the norm |λ |. Because each map λ is continuous and therefore
bounded, |λ | is well-defined. This definition generalizes the definition we gav e in § 4.2 of The General Derivative

for the normed vector space L(V , W ) in finite dimensions over R.

It is straightforward to show that L(V , W ) is complete, and therefore a Banach space. Here is a sketch of the proof:

1. Let S = {λ i}i ∈ N be any Cauchy sequence of bounded linear maps λ i: V → W . We must show that S con-
verges to a bounded linear map λ : V → W .

2. Use the completeness of W to show that for any vector v in V , the sequence {λ i(v)}i ∈ N converges to an ele-
ment of w. Construct a function λ : V → W by setting λ(v) = w.
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3. Show that λ is a bounded linear map.

a. Use the linearity of each λ i and the properties of limits in W to show that λ is a linear map.

b. Observe that since S is Cauchy, the sequence {|λ i |} is bounded by a constant M . Show that M is a
bound for λ .

4. Observe that since S is Cauchy, for any ε > 0  we can fix an N ≥ 0 such that for all i ≥ N and j ≥ N ,
|λ i − λ j | < ε . Then for any x in V with |x| ≤ 1, we have |λ i(x) − λ j(x)| < ε . Therefore |λ i(x) − λ(x)| < ε for
all |x| ≤ 1 and all i ≥ N , so |λ i − λ | < ε for all i ≥ N . Therefore S converges to λ in L(V , W ).

5. The Derivative

With the theory of Banach spaces in hand, we can generalize the definition of the derivative that we gav e in The

General Derivative. Let X and Y be Banach spaces over F , where F is R or C. Let U ⊆ X be a set, let f :U → Y

be a map, and let x be a point of X . We say that f is differentiable at x if there is an open neighborhood H of zero
such that x + h ∈ U for all h ∈ H , a bounded linear map Df (x): X → Y , and a function φ (h): H → Y that is o(h)
such that

f (x + h) = f (x) + Df (x)(h) + φ (h)

for all h ∈ H . We say that the linear map Df (x) is the deriviative of f at x. This is the same definition we gav e in
§ 5 of The General Derivative, except that we are more precise about the domains of f and φ , and we explicitly
require the linear map Df (x) to be bounded.

With this definition, all of the theory presented in §§ 5−9 of The General Derivative for finite-dimensional vector
spaces over R goes through for Banach spaces over R or C.

6. Splitting of Banach Spaces

In this section we discuss the decomposition or “splitting” of Banach spaces into products of subspaces. This kind
of decomposition is useful in applications such as differential geometry.

An example: We begin with an example. Consider the vector space V = R3 with the Euclidean norm. Let V1 be the
set of elements (x, 0, 0), in R3 such that x ∈ R. With the obvious rules for addition and scalar multiplication, i.e.,

(v, 0, 0) + (v′, 0, 0) = (v + v′, 0, 0)

r ⋅ (v, 0, 0) = (rv, 0, 0),

V1 is a vector space over R. It is isomorphic to R. It is a subspace of R3, i.e., all of its elements are also elements
of R3.4 Moreover, it is what we call a closed subspace of R3. In topology, a closed set is a set S whose complement
(i.e., the set of all points not in S) is open. Here the set R3 − V1 (i.e., the set of all points in R3 that are not in V1) is
open, so V1 is closed.

Now let V2 be the set of elements (0, x1, x2) of R3 such that x1 and x2 are real numbers. V2 is a closed subspace of
R3 that is isomorphic to R2. Observe the following about V1 and V2:

1. V1 and V2 are closed subspaces of R3.

2. The intersection of V1 and V2 contains one element (0, 0, 0), the zero element of the addition law of R3.

3. Every element in R3 may be represented as a sum of vectors v1 + v2, with v1 in V1 and v2 in V2.

4. The representation in element 3 is an isomorphism from V1 × V2 (with the sup norm) to R3.

We summarize items 2 and 3 above by saying that V1 and V2 are complementary subspaces of R3. We summarize
items 1 through 4 above by saying that R3 splits into the subspaces V1 and V2.

The general definition: Let V be a topological vector space, and let V1 and V2 be complementary closed subspaces
of V . If the map φ : V1 × V2 → V given by φ (v1, v2) = v1 + v2 is an isomorphism (i.e., a continuous linear map with a

4 Notice that if we are being precise, then we do not say that R itself is a subspace of R3. The elements of R are real numbers, and the ele-

ments of R3 are triples of real numbers. Also, R3 has many subspaces that are isomorphic to R, not just the one we chose. For example, we

could have chosen the set of elements (0, x, 0) such that x ∈ R. In practice mathematicians often do say that R is a subspace of R3. What they

mean is that it is possible to construct an isomorphism from R to a subspace of R3. Such an isomorphism from a space to a subset of a larger

space is sometimes called an embedding.
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continuous linear inverse), then we say that V splits into the subspaces V1 and V2. Notice how this definition gener-
alizes the example we gav e above of splitting R3 into subspaces isomorphic to R1 and R2.

Now let V be a Banach space over R or C. In this case, from the theory of topological vector spaces, we know the
following:

1. If V1 and V2 are closed complementary subspaces of V , then V splits into V1 and V2.

2. If V1 is a finite-dimensional closed subspace of V , then there exists a closed complementary subspace V2.
Therefore V splits into V1 and V2.

See [Lang 2001], § 2. Notice that these statements are true in the special case that V = Rn, V1 =̃ Rm1 , V2 =̃ Rm2 , and
m1 + m2 = n.

Coordinate systems: In § 6 of The General Derivative, we showed how to compute derivatives over vector spaces
V = V1 × ⋅⋅⋅ × Vn that are products of other vector spaces. We called such a product a coordinate system. When a
vector space V splits into subspaces V1 and V2, then by definition it is isomorphic to the product V1 × V2. Therefore
we say that it splits into the coordinate system V1 × V2.

7. The Inverse and Implicit Mapping Theorems

We now revisit the results presented in The Inverse and Implicit Mapping Theorems. We extend the results to
Banach spaces and develop some useful applications.

7.1. The Inverse Mapping Theorem

In this section, we let X and Y be Banach spaces over F , where F is R or C. We let U ⊆ X be an open set and
f :U → Y be a map that is continuously differentiable to order n > 0.

Theorem (Inverse Mapping). Assume that Df (x) is invertible at each point x ∈ U. Then at each point p ∈ U, f

has a local inverse, i.e., there exists an open neighborhood V ⊆ U of p and an invertible map g: V → f (V ) such

that g = f on V . Moreover, g−1 is continuously differentiable to order n, and at each point y in f (V ) we have

Dg−1(y) = Df (g−1(y))−1.

The proof is as given in § 1.5 of The Inverse and Implicit Mapping Theorems. Note the following:

1. Df (x) is a bounded linear map by definition (§ 5).

2. In a Banach space, an invertible bounded linear map is an isomorphism, i.e., its inverse is also bounded (§ 4).
So in the statement of the theorem, we could also have said, “Assume that Df (x) is an isomorphism at each
point x ∈ U .”

Using the theory of infinite series, one can show that the set of invertible bounded linear maps from X to Y is open
in L(X , Y ).5 Then, using the fact that Df (x) is continuous, one can show that if Df ( p) is inv ertible at some point
p ∈ U , then there exists an open neighborhood W ⊆ U of p such that the conditions of the theorem are satisfied at
the points of W . Therefore we have the following corollary:

Corollary. Assume that Df ( p) is invertible for some point p ∈ U. Then f has a local inverse at p, i.e., there

exists an open neighborhood V ⊆ U of p and an invertible map g: V → f (V ) such that g = f on V . Moreover,

g−1 is continuously differentiable to order n, and Dg−1( f ( p)) = Df ( p)−1.

Proof: By the comments above, we can choose an open neighborhood W ⊆ U of p and apply the theorem.

When Y is a coordinate system: Assume that Y splits into a coordinate system Y1 × Y2 (§ 6), and let f1:U → Y1

and f2:U → Y2 be the coordinate maps of f . Fix a point p in U . Assume that Df1( p): X → Y1 is an isomorphism,
and Df2( p): X → Y2 is the zero map. Equivalently, Df ( p): X → Y is an injection (so it is isomorphic with its image
Df ( p)(X)), Df ( p)(X) is a closed subspace of Y , and Y splits into Df ( p)(X) and a complementary closed subspace.
In this case, we may let Y1 be Df ( p)(X) and let Y2 be the complementary closed subspace.

Under these conditions, in applications such as differential geometry, it is useful to construct an open neighborhood
V ⊆ Y of f ( p) and a map g: V → Y such that g is continuously differentiable to order n, g has a local inverse at
f ( p) that is continuously differentiable to order n, and for all x in f −1(V ),

g( f (x)) = ( f1(x), 0).

5 See https://en.wikipedia.org/wiki/Neumann_series.
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Notice that the obvious choice of g(y1, y2) = (y1, 0) does not satisfy the requirements. While this map produces the
required values, it does not have a local inverse at f ( p).

By the corollary, there is an open neighborhood W ⊆ U of p and a map h: W → f1(W ) such that h = f1 on W , h has
an inverse h−1, and h−1 is continuously differentiable to order n. Because h−1 is continuous, f1(W ) = h(W ) is an
open set. Let V = h(W ) × Y2. Then V ⊆ Y is an open neighborhood of f ( p). Now let g: V → Y be the map

g(y) = (g1(y), g2(y)) = (y1, y2 − f2(h−1(y1)))

for any point y = (y1, y2) in V . Then g is continuously differentiable to order n, since it is a composition of maps
with that property. Further, we hav e the following partial derivatives at f ( p):

D1g1( f ( p)) = I D2g1( f ( p)) = 0

D1g2( f ( p)) = Df2(h−1( f ( p))) D(h−1)( f ( p)) = Df2( p) D(h−1)( f ( p)) = 0 D(h−1)( f ( p)) = 0

D2g2( f ( p)) = I

Therefore Dg( f ( p)) = I , so by the corollary, g−1 is continuously differentiable to order n. Finally, for any point x in
f −1(V ), we have

g( f (x))) = ( f1(x), f2(x) − f2(h−1( f1(x))))

= ( f1(x), f2(x) − f2(x))

= ( f1(x), 0),

as required.

When X is a coordinate system: Now assume that X splits into a coordinate system X1 × X2, and let U = U1 × U2.
Fix a point p = ( p1, p2) in U , and assume that D2 f ( p): X2 → Y is an isomorphism, where D2 f is the partial deriva-
tive of f with respect to X2. Equivalently, Df ( p): X → Y is a surjection, its kernel (i.e., the set of points x such that
Df ( p)(x) = 0) is a closed subspace of X , and X splits into the kernel of Df ( p) and a complementary closed sub-
space. In this case, we may let X1 be the kernel and let X2 be the complementary closed subspace.

Under these conditions, in applications such as differential geometry, is is useful to construct an open neighborhood
V ⊆ U of p and a map g: V → X such that g is continuously differentiable to order n, g has a local inverse at p that
is continuously differentiable to order n, and for all x = (x1, x2) in V ,

f (g(x1, x2)) = f ( p1, x2).

Notice that the obvious choice of g(x1, x2) = ( p1, x2) does not satisfy the requirements, because it does not have a
local inverse at p.

As in § 6.2 of The General Derivative, write f(p1,−):U2 → Y to denote the map obtained from f by setting x1 = p1

and letting x2 range over U2. By definition, the partial derivative D2 f ( p1, x2) is the derivative Df(p1,−)(x2). Since
D2 f ( p) = Df(p1,−)( p2) is an isomorphism, by the corollary there is an open neighborhood W ⊆ U2 of p2 and a map
h: W → f(p1,−)(W ) such that h = f(p1,−) on W , h has an inverse h−1, and h−1 is continuously differentiable to order n.
Because h−1 is continuous, h(W ) is an open set. Let W ′ ⊆ X be the set f −1(h(W )); by the continuity of f , W ′ is an
open neighborhood of p. Now define G: W ′ → X as follows:

G(x1, x2) = (x1, h−1( f (x1, x2))).

By construction, G takes p to p and is continuously differentiable to order n. We will now show that (1) G has a
local inverse g at p and (2) g has the required properties.

G has a local inverse g: We hav e the following partial derivatives:

D1G1( p) = I D2G1(q) = 0

D1G2( p) = D1(h−1)( f ( p)) D1 f ( p)

D2G2( p) = D2(h−1)( f ( p)) D2 f ( p) = (D2 f ( p))−1 D2 f ( p) = I
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Therefore the Jacobian matrix for DG( p) is





I

D1(h−1)( f ( p)) D1 f ( p)

0

I




.

This matrix is invertible with inverse





I

−D1(h−1)( f ( p)) D1 f ( p)

0

I




.

Therefore by the corollary, G has a local inverse g: V → X , where V is an open neighborhood of p.

g has the required properties: By the corollary, g is continuously differentiable to order n. Further, from the defini-
tion of G, g has the following explicit formula:

g(x1, x2) = (x1, ( f(x1,−))
−1(h(x2)))

= (x1, ( f(x1,−))
−1( f ( p1, x2)))

You can see this by using the definition of G to compute g(G(x1, x2)) = (x1, x2). The inverse ( f(x1,−))
−1 must exist

because the function g exists. But then we have

f (g(x1, x2)) = f (x1, ( f(x1,−))
−1( f ( p1, x2))))

= f(x1,−)(( f(x1,−))
−1( f ( p1, x2)))

= f ( p1, x2),

as required.

7.2. The Implicit Mapping Theorem

Theorem (Implicit Mapping). Let X1, X2, and Y be Banach spaces spaces over F, where F  is R or C. Let

U1 ⊆ X1 and U2 ⊆ X2 be open sets, let U = U1 × U2, and let f :U → Y be a map. Assume that f is continuously

differentiable to order n > 0 and that the derivative Df (x) is invertible at each point x ∈ U. Let a = (a1, a2) be a

point in U, and let b = f (a). Then there exists an open neighborhood W1 of a1 in U1 and a map g: W1 → U2 such

that g(a1) = a2, f (x1, g(x1)) = b for all x1 in W1, and g is continuously differentiable to order n. Moreover, there

exists a real number r > 0 such that the values g(x) are uniquely determined for all x ∈ B(a1, r).

The proof is as given in § 2.3 of The Inverse and Implicit Mapping Theorems.
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