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This paper explains the concept of a complex chart, i.e., an open subset of a topological space that maps to an open
subset of a complex vector space in a well-behaved way. Complex charts let us define topological spaces called
complex manifolds. We can do calculus over complex manifolds in a way that naturally generalizes calculus over
the complex numbers.

In this paper we focus on complex charts on topological surfaces, i.e., topological spaces that locally map to the
real plane R2 in a well-behaved way. In this case, a chart maps an open set on a topological surface to an open set in
the complex plane, which is topologically equivalent to an open set in R2. This kind of chart is essential in the study
of Riemann surfaces, i.e., connected complex manifolds of complex dimension one.1 By extending the concept of
complex charts to higher dimensions, we obtain the theory of general complex manifolds.

This paper assumes that you are familiar with the material covered in my paper Calculus over the Complex Num-

bers. It also assumes basic familiarity with sets and maps. See, e.g., § 2 of my paper Definitions for Commutative

Algebra.

1. Biholomorphic Functions

We begin with a discussion of biholomorphic functions, which are essential in defining complex charts.

Definition: Let U ⊆ C be a set, and let φ :U → φ (U) ⊆ C be a function. We say that φ is biholomorphic if the fol-
lowing statements are true:

1. φ is holomorphic.

2. φ is one-to one; equivalently, φ has an inverse φ −1: φ (U) → U such that φ −1 φ is the identity function on U

and φ φ −1 is the identity function on φ (U).

3. φ −1 is holomorphic.

More succinctly, φ is biholomorphic if it is holomorphic and has a holomorphic inverse.

Examples: Here are some examples of biholomorphic functions φ on a set U :

1. The identity function id = z → z. This function maps U to U . It is its own inverse.

2. The translation function Ta = z → z − a, where a is a complex number. This function maps U to the set of all
z − a such that z is in U . Its inverse is T−a = z → z + a.

3. The function φ = z → z2, if U is a disc that does not intersect the origin z = 0. φ maps U to the set of all z2

such that z is in U . To see that φ is biholomorphic, note the following:

a. If there are two distinct nonzero complex numbers a and b such that a2 = b2, then we must have
a = reiθ and b = rei(θ +π ), for some r > 0 and some angle θ .

b. No such pair of numbers can lie in a disc that does not intersect the origin. Therefore φ −1(z) = z1/2 is

well-defined on U , and it is holomorphic with derivative
z−1/2

2
.

Properties: From the definition of a biholomorphic map, we obtain the following properties for every biholomor-
phic map φ :

1 You may ask: Why are Riemann surfaces called “surfaces” if they hav e dimension one? Don’t surfaces have dimension two? The answer is

that in a complex vector space the topological dimension is the number of real coordinates, which is two times the complex dimension. For

example, the complex numbers have complex dimension one but topological dimension two.
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1. Both φ and φ −1 are continuous. This fact holds because a differentiable function is continuous.

2. Both φ and φ −1 are open mappings, i.e., they take open sets to open sets. Let V ⊆ φ (U) be an open set. In
§ 3.1 we will prove that the inverse image of an open set under a continuous function is open. Accepting this
fact for now, we see that φ −1(V ) is open because φ is continuous. Let W ⊆ U be an open set. φ (W ) is open
because φ = (φ −1)−1, so φ (W ) is the inverse image of W under the continuous map φ −1.

Composition: Let φ :U → φ (U) ⊆ C and ψ : V → ψ (V ) ⊆ C be biholomorphic functions, with φ (U) ⊆ V . Then
ψ φ is well-defined and biholomorphic, with inverse φ −1 ψ −1. (ψ φ )(U) = ψ (φ (U)) is a subset of ψ (V ). See
Figure 1.

U φ (U)V ψ (V )

φ
ψ

ψ (φ (U))

ψ φ

Figure 1: Composition of biholomorphic functions.

By the chain rule, the derivative of ψ φ is

d(ψ φ )(z) = dψ (φ (z)) dφ (z) = (ψ ′(φ (z)) dz) (φ ′(z) dz) = ψ ′(φ (z))φ ′(z) dz.

Using the pullback notation for functions and for differential one forms,2 we can also write

d(φ *ψ ) = φ * dψ .

2. Bioholomorphic Charts

We now present an important special case of complex charts: biholomorphic charts in the complex plane.

2.1. Basic Definitions

Charts: A biholomorphic chart (chart for short, when there is no ambiguity) is a pair C = (U , φ ) consisting of an
open set U ⊆ C and a biholomorphic function φ :U → φ (U) ⊆ C. We call U the chart domain associated with C.
We call φ the chart map associated with C. We call φ (U) the chart image associated with C.

Let a ∈ U be a complex number. If φ (a) = 0, then we say that the chart (U , φ ) is centered at a.

We may think of a biholomorphic chart as a change of complex coordinate (or of the corresponding real coordi-
nates). For example, let U ⊆ C be an open set, let b ∈ U be a complex number, and let φ be the translation map
Tb = z → z − b. Then (U , φ ) is a chart centered at b. It translates a neighborhood of b to a neighborhood of the ori-
gin. In Calculus over the Complex Numbers, we used this chart to write a power series expansion at b as P Tb,
where P is a power series expansion at zero.

Atlases: A biholomorphic atlas (atlas for short, when there is no ambiguity) is a family of charts
A = {Ci = (Ui , φ i)}i ∈ I , where I is an index set, and the sets Ui cover the complex plane, i.e.,

i ∈ I
∪ Ui = C. For exam-

ple:

1. Let I = {0}, and let C0 = (C, idC), where idC is the identity function on C. Then the family of charts consist-
ing of the single element C0 is an atlas.

2. Let C0 be as in the previous example. Let C1 be the chart consisting of the open ball B(0, 1), together with the
identity function on B(0, 1). Then {C0, C1} is an atlas.

2 Recall that when f and g are functions, we have g* f = f g. When g is a differentiable function and ω = f dz is a one form, we have

(g*ω )(z) = ω (g(z)) dg = f (g(z))g′(z) dz.
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Let A1 and A2 be complex atlases. We say that A1 is included in A2 if every chart of A1 is a chart of A2. In this
case we write A1 ⊆ A2. For example, the atlas in the first example given above is included in the atlas in the second
example given above.

The maximal atlas: The maximal atlas is the unique biholomorphic atlas consisting of all biholomorphic charts. It
is maximal in the sense that it includes all other biholomorphic atlases on C. The maximal biholomorphic atlas
exists by Zorn’s lemma,3 and it is unique up to the choice of index set, which is unique up to a bijection.

Note that the maximal atlas contains a very large number of charts. For every open set U in the complex plane, there
is a chart for each biholomorphic function φ with domain U .

Transition functions: Let A be a biholomorphic atlas on C, and let Ci = (Ui , φ i) and C j = (U j , φ j) be charts of A.
We define the transition function φ ij = φ j φ −1

i . Here φ −1
i means the inverse of φ i restricted to the domain

φ i(Ui ∩ U j) where the composition makes sense.4 The transition function φ ij is defined on φ i(Ui ∩ U j), and its
image is φ j(Ui ∩ U j). It translates the chart image of Ci to the chart image of C j on the area of overlap between the
charts. See Figure 2.

Ui U jUi ∩ U j

φ i(Ui) φ j(U j)

φ i φ j

φ i(Ui ∩ U j) φ j(Ui ∩ U j)

φ ij = φ j φ −1
i

Figure 2: The transition function φ ij .

Note the following:

1. φ ii is the identity map on φ i(Ui).

2. φ −1
ij = φ ji .

3. If Ui ∩ U j = ∅, then φ ij is the trivial function that maps no elements.

4. By the observations in § 1, φ ij is biholomorphic.

Charts on open sets: Let V ⊆ C be an open set. We use the same definitions given above, after replacing C with V ,
to put charts on V :

1. A biholomorphic chart on V is a pair C = (U , φ ) consisting of an open set U ⊆ V and a biholomorphic func-
tion φ :U → φ (U).

2. A biholomorphic atlas on V is a family A = {Ci = (Ui , φ i)}i ∈ I of charts on V such that the sets Ui cover V .

3. The maximal biholomorphic atlas on V is the unique atlas containing all charts on V .

4. A transition function φ ij between charts Ci and C j on V is as defined above.

Note that C itself is an open subset of C, so these definitions extend the previous ones.

2.2. Functions

In this section we investigate the behavior of complex functions expressed in terms of biholomorphic charts.

Meromorphic functions: For any set W ⊆ C and meromorphic function g on W , we can derive a holomorphic
function f on V , where V = W − P, P is a discrete set of poles of g on W , and f = g on V . Thus, for the remainder
of this section, we will focus on holomorphic functions. The theory presented here applies equally to meromorphic

3 For an introduction to basic set theory concepts, including Zorn’s lemma, see § 2 of my paper Definitions for Commutative Algebra.
4 If we wrote out the domain restriction explicitly, the definition would look like this: φ ij = φ j (φ −1

i |φ i(Ui ∩ U j)
). This definition is very precise,

but also very unwieldy. So we will leave the restriction implicit.
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functions, if we always convert a meromorphic function g on W to a holomorphic function f on V in this manner.
The advantage of doing this is that f is defined everywhere on its domain, i.e., it is a function f : V → C.

Charts on the domain: Fix an open set V ⊆ C, an atlas A = {Ci}i ∈ I on V , and a complex function f : V → C. We
express f in terms of the charts Ci of A as follows. For each chart Ci = (Ui , φ i), we define fi: φ i(Ui) → C to be

fi = (φ −1
i )* f = f φ −1

i .

We call fi the local function of f with respect to the chart Ci . Because the chart functions φ i are holomorphic, each
local function fi is holomorphic if and only if f is holomorphic.

The following is a basic property of local functions:

For each pair of charts (Ci , C j), on φ i(Ui ∩ U j) we have

fi = φ *
ij f j . (1)

Proof: On φ i(Ui ∩ U j) we hav e

φ *
ij f j = φ *

ij((φ
−1
j )* f ) = (φ −1

j φ ij)
* f = (φ −1

i )* f = fi .

Thus we may think of a complex function f : V → C as a family of local functions fi: φ i(Ui) → C, one for each
chart Ci , such that property (1) holds.

Conversely, let { fi} be a family of local functions that satisfy property (1). We may define a function f on V as fol-
lows:

f (z) = (φ *
i fi)(z),

where z is a point in V , and Ci is any chart containing z. By the definition of the atlas A, at least one such chart
exists. Further, if C j is any other chart of A containing z, then at z we have

φ *
i fi = φ *

i (φ *
ij f j) = (φ ij φ i)

* f j = φ *
j f j .

Therefore f (z) is independent of the chart, and so f is well-defined on V . Thus we see that there is a one-to-one
correspondence between functions f on V and families of local functions { fi} on the charts of A.

Charts on the image: Fix open sets V ⊆ C and W ⊆ C and a complex function f : V → W . Let A = {Ci}i ∈ I be an
atlas on V , and let B = {C j} j ∈ J be an atlas on on W . We express f in terms of the charts of A and B as follows.
For each pair (Ci , C j), where Ci is a chart of A and C j is a chart of B, we define

fij = φ j fi = φ j f φ −1
i .

fij is defined on φ i(Ui ∩ f −1(U j)). Its image is φ j( f (Ui ∩ f −1(U j))). f is holomorphic if and only if each fij is
holomorphic.

2.3. Differential Forms

In this section, we show how to express complex differential forms in terms of biholomorphic charts. For an intro-
duction to differential forms, see my papers Integration in Real Vector Spaces and Calculus over the Complex Num-

bers. Let V be an open subset of C, let A be an atlas of V , and let Ci = (Ui , φ i) and C j = (U j , φ j) be charts of A.
For the reasons discussed in § 2.2, we focus on holomorphic functions and one forms on V and on the charts of A.

Local zero forms: First we describe function evaluation as integration of a zero form (i.e., a function) over a zero-
dimensional region (i.e., a point). We start with the concept of a local zero form, i.e., a function defined on a chart.

We define the following with respect to the chart Ci of the atlas A:

1. A local zero form on Ci is a local function, i.e., a function fi: φ i(Ui) → C.

2. A local zero-dimensional region or local point on Ci is a function σ i: {0} → φ i(Ui) that maps the single real
number 0 to a complex number σ i(0) = a in the chart image φ i(Ui).

We define the integral of a local zero form fi at a local point σ i as follows:

σ i

∫ fi =
0
∫ σ *

i fi =
0
∫ fi σ i = fi(σ i(0)) = fi(a).
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Zero forms: Now we define a zero form, i.e., a function defined on an atlas A.

1. A zero form on A is a family f = { fi}i ∈ I of local functions, one for each chart of A, such that property (1)
holds. By the observations in § 2.2, f is a function on V .

2. A zero-dimensional region or point on A is a function σ : {0} → V that maps the single real number 0 to a
complex number a in V .

We define the integral of a zero form f at a point σ as follows:

σ
∫ f =

σ i

∫ fi ,

where Ci = (Ui , φ i) is any chart of A such that Ui contains σ (0), and σ i = φ i σ . By the definition of the atlas A, at
least one such chart Ci exists. Further, if C j is any other chart of A such that U j contains σ (0), then

σ j

∫ f j =
φ ij φ ji σ j

∫ f j =
φ ji σ j

∫ φ *
ij f j =

σ i

∫ φ *
ij f j =

σ i

∫ fi ,

where the last equality follows from property (1). Therefore the value of the integral does not depend on the choice
of chart.

Local one forms: We now discuss the concept of a local one form, i.e., a one form on a chart. We define the follow-
ing with respect to the chart Ci of the atlas A:

1. A local one form ω i on Ci is a mapping from φ i(Ui) to L(C, C), the space of linear maps from C to C. We
write ω i(z) = fi(z) dz, where fi is a function from φ i(Ui) to C, and dz is the identity map z → z. For any
complex number a in φ i(Ui), ω i(a) = fi(a) dz is the linear map that takes each complex number b to the com-
plex number fi(a)b.

2. A local one-dimensional region or local path on Ci is a differentiable mapping σ i: si → φ i(Ui), where
si = [ai , bi] is an interval of the real line.

We define the integration of a local one form ω i = fi dz over a local path σ i as follows:

σ i

∫ ω i =
b

a

∫ σ *
i ω i =

b

a

∫ ω i(σ i(t))σ ′i(t) dt.

Note that if we forget the chart structure of A and think of φ i(Ui) as an open set W ⊆ C, then these definitions agree
with the definitions that we gav e in Calculus over the Complex Numbers for a one form on W and for the integration
of a one form over a path σ in W .

One forms: Now we define a one form on an atlas A.

1. A one form on A is a family ω = {ω i}i ∈ I of local one forms, one for each chart of A, such that for each pair
of charts (Ci , C j), on φ i(Ui ∩ U j) we hav e

ω i = φ *
ijω j . (2)

2. A one-dimensional region or path on A is a mapping σ : s → V , where s = [a, b] is an interval of the real
line, and for every chart Ci = (Ui , φ i), such that the image of σ is contained in Ui , the mapping
σ i = φ i σ : [a, b] → φ i(Ui) is differentiable.

Fix a one form ω , a path σ , and a chart Ci such that the image of σ is contained in Ui . We define the integral of ω
over σ as follows:

σ
∫ ω =

σ i

∫ ω i .

If C j is any other chart such that U j contains the image of σ j , then we have

σ j

∫ ω j =
φ ij φ ji σ

∫ ω j =
φ ji σ j

∫ φ *
ijω j =

σ i

∫ φ *
ijω j =

σ i

∫ ω i ,
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where the last equality follows from property (2). Therefore the value of the integral does not depend on the choice
of chart.

To integrate over a path that spans multiple chart domains, we divide the path into a chain γ of paths, each of which
is contained in a chart domain, and we sum the integrals of the paths in the chain. For example, see the chain
γ = σ1 + σ2 shown in Figure 3. The chain spans the chart domains U1 and U2, but each σ i is contained in the chart

domain Ui . By definition,

γ
∫ ω =

σ1

∫ ω +
σ2

∫ ω .

U1 U2

σ1

σ2

Figure 3: A chain γ = σ1 + σ2 that spans chart domains U1 and U2.

Global one forms: We will call a one form on V a global one form, to distinguish it from the local one forms on the
charts of A. Notice that we now hav e two notions of a global one form:

1. A one form on V , i.e., a one form ω = f dz as defined in Calculus over the Complex Numbers.

2. A one form on A, i.e., a family of local one forms {ω i} defined on the charts of A and satisfying property (2).

These concepts are related in a way that is analogous to the relationship between a function f on V and a family of
local functions { fi} on A (§ 2.2).

We will need the following results:

Lemma (pullback distribution): Let ω = f dz be a one form defined on a subset of C, and let g and h be holomor-

phic functions, each defined on a subset of C. Then on the domain where g*(hω ) is defined, we have

g*(hω ) = (g*h)(g*ω ).

Proof: For all z where (g*(hω ))(z) is defined, we have

(g*(hω ))(z) = (h(g(z))ω (g(z))) dg(z)

= h(g(z))(ω (g(z)) dg(z))

= (g*h)(z)(g*ω )(z)

= ((g*h)(g*ω ))(z).

Lemma (pullback composition): Let ω = f dz be a one form defined on a subset of C, and let g and h be holomor-

phic functions, each defined on a subset of C. Then on the domain where g*(h*ω ) is defined, we have

g*(h*ω ) = (h g)*ω .

Proof: For all z where (g*(h*ω ))(z) is defined, we have

(g*(h*ω ))(z) = g*(ω (h(z)) dh(z))

= ω (h(g(z))) dh(g(z)) dg(z)

= ω ((h g)(z)) d(h g)(z)

= ((h g)*ω )(z).
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Now let ω = f dz be a one form on V . Define

ω i = (φ −1
i )*ω .

Letting z be the identity function, and writing zi = (φ −1
i )*z = φ −1

i , we hav e

ω i = (φ −1
i )*( f dz) = ((φ −1

i )* f )((φ −1
i )*dz) = fi d((φ −1

i )*z) = fi dzi .

Then for any charts Ci and C j , and at any point a such that (φ *
ijω j)(a) is defined, we have

φ *
ijω j = φ *

ij((φ
−1
j )*ω ) = (φ −1

j φ ij)
*ω = (φ −1

i )*ω = ω i .

Therefore the family ω = {ω i} = { fi dzi} is a one form on A.

Conversely, let {ω i} be a family of local one forms satisfying property (2). Define a one form ω on V as follows:

ω (z) = (φ *
i ω i)(z),

where z is a point in V , and Ci is any chart containing z. If C j is any other chart of A containing z, then

φ *
i ω i = φ *

i (φ *
ijω j) = (φ ij φ i)

*ω j = φ *
jω j .

Therefore ω (z) is independent of the chart, and ω is well-defined on V . Thus there is a one-to-one correspondence
between one forms on V and one forms on A.

3. Topological Spaces

We wish to generalize the idea of an atlas of biholomorphic charts on C to an atlas of continuous charts on a topo-
logical surface. In this section we discuss general topological spaces, including topological surfaces.

3.1. Definitions

The Euclidean topology: Recall that the Euclidean topology on the n-dimensional real space Rn is defined as fol-
lows:

1. The distance |a − b| from a point a = (a1, . . . , an) to a point b = (b1, . . . , bn) is √ (a1 − b1)2+. . . +(an − bn)2.

2. The open ball B(a, r) with center a and radius r, for r > 0, is the set of all points x whose distance to a is less
than r, i.e., |x − a| < r.

3. The open sets in Rn are unions of open balls.

It is easy to show that a set U ⊆ Rn is open if and only if, for each point p ∈ U , there is a real number δ > 0  such
that B( p, δ ) ⊆ U .

The Euclidean topology on the complex numbers C is the Euclidean topology on R2, where we identify C with R2

via the rectangular coordinate map R. See § 1.2.1 of Calculus over the Complex Numbers.

Axiomatic generalization: An axiomatic generalization of a concept C characterizes C as a specific instance of a
more general and abstract concept A defined by certain axioms, which C also satisfies. Axiomatic generalization is
ubiquitous in higher mathematics. For example, the concept of a ring is an axiomatic generalization of the integers.

Topological spaces: A topological space is an axiomatic generalization of the Euclidean topology on Rn. It is a
pair T = (S, O), where S is a set, and O is a set of subsets of S satisfying the following axioms:

1. The empty set and S are elements of O.

2. Any union of elements of O is an element of O.

3. Any intersection of finitely many elements of O is an element of O.

The set O is called a topology on S. The elements of O are called the open sets of the topology.

The Euclidean topology on Rn is a topological space T = (S, O), where S = Rn, and O is the set of unions of open
balls in Rn.

We often identify a topological space T = (S, O) with its underlying set S. For example:

• We may write S to refer to T . In this case the topology on S is implied.
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• We may write T to refer to S. For example, we may say that a set U is a subset of T , meaning that it is a sub-
set of S.

Complements and closed sets: Fix a topological space T = (S, O), and let U be a subset of S.

1. The complement of U , written UC , is the set difference S − U .

2. U is closed if and only if its complement UC is open.

Bases and subbases: Fix topological space T = (S, O) and a set of subsets B of S.

1. B is a base or basis for the topology O if every element of O may be represented as the union of elements of
B. The open balls in Rn are a basis for the Euclidean topology on Rn.

2. B is a subbase or subbasis for O if there exists a basis B′ for O such that every element of B′ except S may be
represented as the intersection of finitely many elements of B.

If B is a subbasis for O, then we say that B generates O. In this case O is minimal among the topologies on S that
contain B.

A set is countable if it can be put in one-to-one correspondence with the integers. If T has a countable basis, then
we say that T is countable. If T has a countable subbasis, then we say that T is second countable.

Neighborhoods: Let T = (S, O) be a topological space and p be a point of S. A neighborhood of p is a set U ⊆ S

that contains p. If U is open (i.e., U ∈ O), then we say that U is an open neighborhood of p.

Hausdorff topologies: Fix a topological space T . If for every pair of points p and q in T there exists an open
neighborhood U p of p and an open neighborhood Uq of q such that U p ∩ Uq = ∅, then we say that T is Hausdorff.

The subset topology: Let T = (S, O) be a topological space, and let U be a subset of S. We use the following rule
to define a topological space T ′ = (U , O′):

A set V ⊆ U is open in T ′ if and only if there exists an open set W in T  such that V = U ∩ W.

It is an easy exercise to check that this definition satisfies the axioms for a topology on U .

We call the topology defined above the subset topology on U with respect to the topology T . We also call it the
topology induced on U as a subset of S with respect to T . As an example, the Euclidean topology on the real line R

is the topology induced on R with respect to the Euclidean topology on R2.

Compactness: Let T = (S, O) be a topological space, and let U be a subset of S. A cover of U is a family of sets
C = {Vi}i ∈ I that cover U , i.e., such that ∪i ∈ IVi = U . An open cover of U is a cover of U such that every set Vi is
open in T . A subcover of a cover C of U is a cover C′ of U such that every set in the cover C′ is a set in the cover
C.

A subset U of S is compact with respect to T if every open cover of U has a finite subcover. For example:

1. A closed interval [a, b], for a < b in R, is compact with respect to the Euclidean topology on R.

Proof: Let C be an open cover of [a, b], not necessarily finite. Let S be the set of real numbers a ≤ x ≤ b such
that [a, x] is covered by a finite number of sets of C. S is not empty, because we can take x = a. Therefore by
a basic property of the real numbers, S has a least upper bound. It suffices to show that b is the least upper
bound of S, and for this it suffices to show that any number r, a ≤ r < b, is not the least upper bound. Fix
such a number r. We know that [a, r] is covered by a finite set F open sets of C. The union U of those sets is
open, so there exists an open ball B(r, ε ) ⊆ U , and we may choose ε so that B(r, ε ) ⊆ [a, b]. But then F cov-
ers [a, r + ε /2], so r is not an upper bound, as required.

2. An open interval (a, b), for a < b in R, is not compact with respect to the Euclidean topology on R.

Proof: It suffices to give an infinite open cover C of (a, b) that has no finite subcover. Define C as follows:

• The index set I is the set of real numbers in the interval (a, b).

• The set Ui in C is the open ball (i.e., open interval) with center i and radius half the distance from i to
the nearer of the points a and b.

Clearly C is an open cover of (a, b). Let F be any finite subset of C. Then there is a smallest number i such
that Ui ∈ F . Let c = a + (i − a)/2. Then the numbers in the interval (a, c) are not covered by Ui , nor are they
covered by any U j , j > i. Therefore F is not an open cover of (a, b).
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These statements are special cases of the Heine-Borel theorem, which we state in § 3.2.

Connected sets and spaces: Let T = (S, O) be a topological space, and let U be a subset of S. U is connected in T

if U cannot be represented as the union of two sets V and W , each of which is a subset of S and is open in T , such
that V ∩ W = ∅. For example, the open ball B(0, 1) is connected in R2, because any pair of open sets V and W

such that V ∪ W = B(0, 1) must have non-empty intersection. The union of open balls B(−1, 1) ∪ B(1, 1) is not
connected in R2, because the open balls have empty intersection.

Let T = (S, O) be a topological space. We say that T is connected if S is a connected set in T .

Maps: Let T1 = (S1, O1) and T2 = (S2, O2) be topological spaces. A map f : T1 → T2 from T1 to T2 is a mapping of
sets f : S1 → S2.

Let f : T1 → T2 be a map.

1. We say that f is continuous if for every open set U in f (S1), the set f −1(U) is open in S1.

2. We say that f is open if for every open set U in T1, f (U) is open in T2.

3. An inverse map for f is a map f −1: f (S1) → S1 such that f −1 f is the identity map on S1 and f f −1 is the
identity map on f (S1). A map f has an inverse if and only if f is one-to-one.

The following basic result relates continuity as defined here for topological spaces with continuity as defined in The

General Derivative for real vector spaces.

Let f :U ⊆ Rm → Rn be a mapping of topological spaces, where U  has the subset topology induced by the

Euclidean topology on Rm, and Rn has the Euclidean topology. Then f is continuous on U as a map of topologi-

cal spaces if and only if it is continuous on U in the sense of real and complex analysis, i.e., for any p ∈ U and

any ε > 0, there exists δ > 0 such that f (B( p, δ )) ⊆ B( f ( p), ε ).

Proof: Assume that f is continuous on U in the sense of topological spaces. Then for any p ∈ U and any ε ,
B( f ( p), ε ) is open in Rn, so V = f −1(B( f ( p), ε )) is open in U and therefore open in Rm. This means we can find an
open ball B( p, δ ) ⊆ V . Then f (B( p, δ )) ⊆ B( f ( p), ε ), as required.

Now assume that f is continuous on U in the sense of real analysis, and let V ⊆ f (U) be an open set. We must
show that f −1(V ) is open in U . Choose any point q ∈ V and any point p ∈ f −1(V ) such that f ( p) = q. Because V

is open, there exists an open ball B(q, ε ) ⊆ V . By continuity, there exists an open ball B( p, δ ) such that
f (B( p, δ )) ⊆ B(q, ε ) ⊆ V . But then B( p, δ ) ⊆ f −1(V ). Since B( p, δ ) is open and contains p and lies inside
f −1(V ), and this is true for every p ∈ f −1(V ), f −1(V ) is a union of open sets, so it is open.

Homeomorphisms: Let T1 and T2 be topological spaces. A map f : T1 → T2 is a homeomorphism if it is continu-
ous and has a continuous inverse. Note the following:

1. The subset topology (defined above) lets us make any subset U of T1 into a topological space. Therefore the
definition of a homeomorphism applies to any map f :U ⊆ T1 → T2.

2. A biholomorphic function (defined in § 1) is a homeomorphism from a subset U ⊆ C to f (U) ⊆ C.

3. By the same argument made in § 1 for biholomorphic functions, a homeomorphism is an open map.

If a homeomorphism f : T1 → T2 exists, then we say that the topological spaces T1 and T2 are homeomorphic. We
say that subsets U1 ⊆ T1 and U2 ⊆ T2 are homeomorphic if they are homeomorphic as subsets of T1 and T2 respec-
tively, with the induced topologies.

3.2. Properties

We now state some basic properties of topological spaces and maps between them.

Bounded subsets of Rn: Let U be a subset of Rn. We say that U is bounded if there exists a real number r > 0 such
that U ⊆ B(0, r). For example:

1. The unit circle is a bounded subset of R2.

2. The x axis is not a bounded subset of R2.

The following result is called the Heine-Borel theorem:
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Let U be a subset of Rn, n > 0, with the Euclidean topology. Then U is compact if and only if it is closed and

bounded.

You can find the proof of this theorem in any standard textbook on point-set topology, e.g., [Gaal 2009].5

Continuous images of compact sets: Let T1 be a topological space, and let U be a subset of T . A continuous

image of U is the image f (U) of a continuous map f : T1 → T2, where T2 is another topological space.

The continuous image of a compact set is compact.

Proof: Let T1 and T2 be topological spaces, let f : T1 → T2 be a continuous map, and let U ⊆ T1 be a compact set.
Let {Vi}i ∈ I be an open cover of f (U), not necessarily finite. Then because f is continuous, { f −1(Vi)}i ∈ I is an
open cover of U . Choose a finite subcover { f −1(Vi)}i ∈ J . Then {Vi}i ∈ J is a finite subcover of f (U).

Topological dimension: Let T be a topological space and n > 0 be a natural number. We say that T has topological

dimension n if T is covered by a collection of open subsets, each of which is homeomorphic to an open subset of
Rn. Note that under this definition, not every topological space has a topological dimension. For example, the union
of a line segment and a disc in R2, with the subset topology, has no topological dimension. More general definitions
of topological dimension are possible, but this definition is simple and intuitive, and it is sufficient for our purposes.

The following statement asserts that, when it exists, the concept of topological dimension is well-defined:

Let T be a topological space. If T  has topological dimension n, then it does not have topological dimension m,

for any m ≠ n.

We prove the following special case. The general proof is similar.

R and R2 have distinct topological dimensions.

Proof: It suffices to show that for any open set U ⊆ R2 and any continuous map f :U → R, f is not one-to-one.
Choose an open ball B( p, r) contained in U . Inside this open ball, put a cross C = H ∪ V consisting of two perpen-
dicular line segments of equal length, a horizontal segment H parallel to the x axis and a vertical segment V parallel
to the y axis, each with its midpoint at p, so that p is at the center of the cross. Let q = f ( p). Choose a point p1 to
the right of p on H , and let q1 = f ( p1). By continuity, we can choose a point p2 ≠ p on V such that
q ≤ q2 = f ( p2) < q1. By continuity again, we can choose a point p3 on H such that q ≤ q3 = f ( p3) < q2.

The map f restricted to the subset topology on H is a continuous map from H ⊆ R to R. By the intermediate value
theorem from calculus, there exists a point p4 between p1 and p3 on H such that f ( p4) = q2. But then f maps both
p2 and p4 to q2, and p2 ≠ p4, so f is not one-to-one.

It is clear that R has topological dimension 1, and R2 has topological dimension 2.

3.3. Topological Surfaces

Let T be a topological space. We say that T is a topological surface if it has topological dimension 2. The follow-
ing statements are clear:

1. R2 is a topological surface.

2. Any open subset of R2, with the subset topology, is a topological surface.

The corresponding statements for C are also clear.

4. Charts on Topological Surfaces

We now generalize the concepts presented in § 2 for biholomorphic charts on C to the case of complex charts on a
topological surface.

4.1. Basic Definitions

Complex charts: On a topological surface T , a complex chart (chart for short, when there is no ambiguity) is a pair
C = (U , φ ) consisting of an open set U ⊆ C and a homeomorphism φ :U → C. As before, we call U the chart

domain associated with C. We call φ the chart map associated with C. We call φ (U) the chart image associated
with C.

5 In mathematics, point-set topology refers to the study of topological spaces and maps between them. Algebraic topology refers to the study

of the algebraic properties of these concepts.
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Let a ∈ U be a complex number. If φ (a) = 0, then we say that the chart (U , φ ) is centered at a.

We may think of a complex chart as providing a complex coordinate on the chart domain. Note that a biholomor-
phic chart as defined in § 2.1 is a special case of this definition, where T is an open subset of C, and the homeomor-
phism φ is biholomorphic. In the case of a general topological surface T , the derivative of φ is not defined.

Transition functions: Let T be a topological surface, and let Ci = (Ui , φ i) and C j = (U j , φ j) be charts on T , where i

and j are members of an index set I . We define the transition function φ ij = φ j φ −1
i . This function is defined on

φ i(Ui ∩ U j), and its image is φ j(Ui ∩ U j). It translates the chart image of Ci to the chart image of C j on the area of
overlap between the charts. The picture is the same one given in Figure 2 for biholomorphic charts on C.

Compatible charts: Again let T be a topological surface, and let Ci = (Ui , φ i) and C j = (U j , φ j) be charts on T ,
where i and j are members of an index set I . We say that the charts Ci and C j are compatible if the transition func-
tions φ ij and φ ji are biholomorphic. Note that in the case of biholomorphic charts (§ 2.1), all pairs of charts are com-
patible, because all chart maps are biholomorphic.

Complex atlases: A complex atlas on a topological surface T (atlas for short, when there is no ambiguity) is a fam-
ily of charts A = {Ci = (Ui , φ i)}i ∈ I , where I is an index set, the sets Ui cover T , and every pair of charts Ci and C j

in A is compatible. The compatibility condition is new; we require compatibility because the chart maps are not
biholomorphic in general.

Let A1 and A2 be complex atlases. As before, we say that A1 is included in A2 if every chart of A1 is a chart of A2.
In this case we write A1 ⊆ A2.

Compatible atlases: Fix a topological surface T , and let A1 and A2 be atlases on T . We say that A1 and A2 are
compatible if every chart of A1 is compatible with every chart of A2 and vice versa. Compatibility induces an
equivalence relation on the set of atlases of T , in which two atlases are equivalent if they are compatible.

In the case of biholomorphic charts (§ 2.1), every chart is compatible with every other chart. So all atlases on C are
equivalent.

Complex structures: Fix a topological surface T . An equivalence class of atlases on T is called a complex struc-

ture. Every atlas is a member of one and only one equivalence class; therefore we may specify a complex structure
by giving any atlas in the structure. In the case of biholomorphic charts, all atlases are equivalent, so there is only
one structure, the set of all atlases.

The maximal atlas: Every complex structure has a maximal atlas, i.e., an atlas that contains every chart of every
atlas in the structure. Thus we may specify a complex structure by giving a maximal atlas. In the case of biholo-
morphic charts, the maximal atlas is the set of all charts.

Charts on subsets: Let T be a topological space and U ⊆ T be a subset. Then the subset topology (§ 3.1) makes U

into a topological space, so we may use the definitions above to put charts and atlases on U .

Riemann surfaces: A Riemann surface is a pair R = (T , A), where T is a connected topological surface whose
topology is Hausdorff and second countable, and A is a maximal atlas on T . It is clear that C with the Euclidean
topology and all biholomorphic charts is a Riemann surface, as is any connected open subset of C with all biholo-
morphic charts.

4.2. Functions and Maps

For the reasons discussed in § 2.2, we focus on holomorphic functions.

Functions: Let R = (T , A) be a Riemann surface with maximal atlas A = {Ci}.

A function on R is a mapping f : T → C. For each chart Ci = (Ui , φ i), we define the local function fi as in § 2.2,
i.e.,

fi = (φ −1
i )* f = f φ −1

i .

Note that fi is a complex function from φ i(Ui) ⊆ C to C.

The same arguments given in § 2.2 go through to establish a one-to-one correspondence between complex functions
f on R and families of local functions { fi} on the charts of A that satisfy property (1), i.e,

fi = φ *
ij f j .
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Let f be a complex function on R. We say that f is holomorphic if every local function fi on A is holomorphic.

Maps: Let R1 = (T1, A1) and R2 = (T2, A2) be Riemann surfaces.

A map f from R1 to R2 is a map f : T1 → T2. As in § 2.2, for each pair (Ci , C j), where Ci is a chart of A1 and C j is
a chart of A2, we define

fij = φ j fi = φ j f φ −1
i .

fij is a function from V ⊆ C to C, where V = φ i(Ui ∩ f −1(U j)). Its image is φ j( f (Ui ∩ f −1(U j))) ⊆ C.

Let f : R1 → R2 be a map. We say that f is holomorphic if for every i and j, fij is holomorphic.

4.3. Differential Forms

For the reasons discussed in § 2.2, we focus on holomorphic functions and one forms.

Local zero forms: We define local zero forms, local points, and integration of local zero forms over local points as
in § 2.3, after replacing the open set V ⊆ C and atlas A in the definitions with a Riemann surface R = (T , A). The
definitions depend only on the complex charts Ui , and not on V or R.

Zero forms: We define zero forms, points, and integration of zero forms over points as in § 2.3, after replacing the
open set V ⊆ C and atlas A in the definitions with a Riemann surface R = (T , A). Nothing in the definitions depends
on the complex numbers in the open set V . The same arguments go through to show that the integral is independent
of the choice of chart.

Local one forms: We define local one forms, local paths, and integration of local one forms over local paths as in
§ 2.3, after replacing the open set V ⊆ C and atlas A in the definitions with a Riemann surface R = (T , A). Again
the definitions depend only on the complex charts Ui , and not on V or R.

One forms: We define one forms, paths, and integration of one forms over paths as in § 2.3, after replacing the open
set V ⊆ C and atlas A in the definitions with a Riemann surface R = (T , A). For each i and j, φ *

ij is biholomorphic,

so condition (2), i.e., ω i = φ *
ijω j , is well-defined. The same arguments go through to show that the integral is inde-

pendent of the choice of chart.

Global one forms: Let R = (T , A) be a Riemann surface. There is no direct analog to the concept of a differential
form f dz on T , because in general there is no complex identity function z: T → C. Howev er, we do hav e the con-
cept of a holomorphic function f : R → C (§ 4.2). Further, for any chart Ci in A, the local function fi = (φ −1

i )* f is
holomorphic. Therefore, given a holomorphic function f on R, we can define the following global differential df

on R:

df = {dfi}i ∈ I , (3)

where dfi means d( fi), i.e., the derivative of the holomorphic function fi . For all i and j,

φ *
ij df j = d(φ *

ij f j) = dfi ,

so (3) yields a valid one form on R.

Note that we are slightly abusing notation here. The notation df does not mean the derivative of f : R → C; in gen-
eral there is no such derivative. Instead, we are proceeding by analogy. In the case of a biholomorphic atlas on an
open set V and a holomorphic function f : V → C, by the definition of the local one form ω i with ω = df , we hav e

(df )i = (φ −1
i )*df = d((φ −1

i )* f ) = d( fi). (4)

In the case of a Riemann surface R and a holomorphic function f : R → C, df is not a priori defined. However, we
can assert that (df )i = d( fi), as in (4), and then we can define df as shown in (3).

We can extend this notation as follows. Let f and g be holomorphic functions on R. In the case of biholomorphic
charts, we have

(φ −1
i )*( f dg) = ((φ −1

i )* f )((φ −1
i )*dg) = fi dgi .

Therefore on a general Riemann surface, we define

f dg = { fi dgi}i ∈ I . (5)

For all i and j,
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φ *
ij( f j dg j) = (φ *

ij f j) (φ *
ij dg j) = fi d(φ *

ij g j) = fi dgi ,

so (5) yields a valid one form on R. This is the closest analog on R to a global one form f dz on an open set V ⊆ C.

5. The Riemann Sphere

We now present a fundamental example of a Riemann surface — the Riemann sphere.

5.1. The One-Point Compactification of R

We begin with a basic construction in one real dimension: adding a single point to R to form a compact topological
space. Let C be the unit circle centered at the origin.

The punctured unit circle: We define a punctured circle to be a circle with one point deleted. Let
C* = C − {(0, 1)} be the punctured circle formed by deleting the point (0, 1) from C. Each point on C* corresponds
to exactly one angle in the interval I = (−3π /2, π /2), via the mapping α (θ ): I → C* given by α (θ ) = (cos θ , sin θ ).
We construct a mapping ψ (θ ): I → R as follows: for each angle θ in I , let p = α (θ ), let L be the line passing
through (0, 1) and p, and let ψ (θ ) be the intersection of L with the x axis.

Figure 4 shows how to construct q = ψ (θ ) in the case where θ lies in the range [−π /2, 0], and the x coordinate of q

lies between 0 and the x coordinate of p. As shown, the right triangle with vertical and horizontal sides and with
hypotenuse from (0, 0) to p has a vertical side of length − sin θ and a horizontal side of length cos θ . Therefore the
slope of L is m = −(1 − sin θ )/cos θ , and the x coordinate of q is −1 ⋅ (1 /m) = cos θ /(1 − sin θ ).

cos θ

1

− sin θ

p = (cos θ , sin θ )

q = 


cos θ
1 − sin θ

, 0



θ

Figure 4: Projection from (0, 1), for −π /2 ≤ θ ≤ 0.

Figure 5 shows how to construct q = ψ (θ ) in the case where θ lies in the range [0, π /2), and the x coordinate of p

lies between 0 and the x coordinate of q. As shown, the right triangle with vertical and horizontal sides and with
hypotenuse from (0, 1) to p has a vertical side of length 1 − sin θ and a horizontal side of length cos θ . Therefore
the slope of L is m = −(1 − sin θ )/cos θ , and the x coordinate of q once again is −1 ⋅ (1 /m) = cos θ /(1 − sin θ ).

These observations show that when θ lies in the range [−π /2, π /2), we have

ψ (θ ) =
cos θ

1 − sin θ
.

By symmetry, this mapping is valid for all θ in I .

Taking the derivative yields ψ ′(θ ) = 1/(1 − sin θ ). When θ lies in the interval [−π /2, π /2), ψ ′(θ ) > 0, and ψ ′(θ )
increases without bound as θ approaches π /2. Therefore the x coordinate of q strictly increases and becomes arbi-
trarily large as θ increases in the interval [−π /2, π /2). Further, because ψ (−π /2) = 0, ψ maps every point on the unit
circle in the interval [−π /2, π /2) to a point on the nonnegative x axis, and this mapping is one-to-one. By symmetry,
ψ is a one-to-one mapping from I to the x axis.
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cos θ

sin θ

1 − sin θ

θ

p = (cos θ , sin θ )

q = 


cos θ
1 − sin θ

, 0



Figure 5: Projection from (0, 1), for 0 ≤ θ < π /2.

Since the mapping α : I → C* is also one-to-one, ψ induces a one-to-one mapping φ = ψ α −1: C* → R. The map φ
is called the projection of points on C* from (0, 1) to the x axis.

Now put the subset topology on C*, via its embedding in R2. A basis for this topology is given by the set of images
under α of open intervals of angles, and each such image maps to an open interval in R under φ . Therefore φ is a
homeomorphism from C* to R.

We hav e shown that R, which is not bounded in R2, is homeomorphic to C*, which is bounded in R2. This may
seem counterintuitive. Howev er, note that neither R nor C* is closed in R2, so this result is consistent with the
Heine-Borel theorem.

The unit circle: Put the subset topology on C, via its embedding in R2, and observe the following:

1. C contains C* as a subset.

2. The subset topology on C* as a subset of C is the same as the subset topology on C* as a subset of R2.

Therefore, up to homeomorphism, we may think of C as a topological space consisting of R plus the point (0, 1),
which we call the point at infinity and denote ∞. An open set in C is either an open set in C* = R or an open set
containing (0, 1) = ∞. We may represent an open set U containing ∞ as {U − ∞} ∪ B, where B is an open ball
centered at ∞. Every such open ball B corresponds to the image under θ → (cos θ , sin θ ) of a range of angles
(π /2 + δ , π /2 − δ ), for some real number δ > 0. Fix such an open ball B. Delete the point ∞ from B to form B*,
and form the projection φ (B*) onto the real line. Let r be the projection from the point corresponding to π /2 − δ .
Then

φ (B*) = {x ∈ R: |x| > r}.

C is a closed and bounded subset of R2, so by the Heine-Borel theorem it is compact. We call C with its subset
topology and with the projection function φ : C* → R the one-point compactification of R.

5.2. The One-Point Compactification of C

Now we describe the analogous construction for the complex plane C. Identify C with the xy plane in R3, and let S

be the surface of the unit sphere centered at the origin in R3.

The punctured surface of the unit sphere: We define a punctured spherical surface to be a spherical surface with
one point deleted. Let S* = S − {(0, 0, 1)} be the punctured spherical surface formed by deleting the point (0, 0, 1)
from S. Each point on S* corresponds to exactly one pair of angles θ = (θ1,θ2) in the product of intervals
I = I1 × I2 = [0, 2π ) × [−π /2, π /2), via the mapping α (θ ): I → S* given by α (θ ) = (cos θ1, sin θ1, sin θ2). θ1 is an
angle in the y direction from the x axis, and θ2 is an angle in the z direction from the line segment connecting the
origin to (cos θ1, sin θ1, 0).
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We construct a mapping ψ (θ ): I → C as follows: for each pair of angles θ in I , let p = α (θ ), let L be the line pass-
ing through (0, 0, 1) and p, and let ψ (θ ) be the intersection of L with the xy plane. Figures 4 and 5 show the picture
in the vertical plane through the origin and p. In polar coordinates, ψ (θ ) is the point reiθ1 , where
r = cos θ2/(1 − sin θ2). The projection mapping φ = ψ α −1 is one-to-one from S* to C. By the same argument
given in § 5.1, S* is homeomorphic to C.

The surface of the unit sphere: By the same argument given in § 5.1, we may think of S as a topological space
consisting of C plus the point (0, 0, 1), which we call the point at infinity and denote ∞. An open ball B centered at

∞ corresponds to all pairs of angles (θ1,θ2) such that π /2 − θ2 < δ , for some δ > 0. The projection φ (B*) is giv en by

{z ∈ C: |z| > r},

for some r > 0.

By Heine-Borel, S is compact. S with its subset topology and with the projection function φ : S* → C is the one-

point compactification of C.

5.3. Projection from the Opposite Point

Now we inv estigate what happens when we project from the point opposite (0, 1) on the unit circle or (0, 0, 1) on the
unit spherical surface. As before, let C be the unit circle centered at the origin in R2, and let S be the surface of the
unit sphere centered at the origin in R3.

The unit circle: Let p1 = ∞ = (0, 1), let p2 = (0, −1), and let C*
i = C − {pi} for i ∈ {1, 2}. Let φ1: C*

1 → R be the
projection from p1 described in § 5.1. Let φ2 be the corresponding projection from p2. Figure 6 shows the projec-
tion φ2( p) of a point p = α (θ ) in C*

2 for θ in the range [−π /2, 0]. By an argument similar to the one we made in
§ 5.1, the x coordinate of q is cos θ /(1 + sin θ ), and the map φ2: C*

2 → R is one-to-one. Further, we hav e the follow-
ing facts:

1. φ2(∞) = 0

2. Let θ be the angle of a point p = α (θ ) on C*
1 ∩ C*

2 . Let ψ i(θ ) be the x coordinate of the projection from pi

through p. Then

ψ1(θ )ψ2(θ ) = 


cos θ
1 − sin θ






cos θ
1 + sin θ




=
cos2 θ

1 − sin2 θ
=

cos2 θ
cos2 θ

= 1,

where the last step is valid because cos θ ≠ 0. Thus φ1( p) = 1/φ2( p), and vice versa.

3. The line passing through p1 and p meets the line passing through p2 and p at right angles. See the dashed
line in Figure 6.

The surface of the unit sphere: Let p1 = ∞ = (0, 0, 1), let p2 = (0, 0, −1), and let S*
i = S − {pi} for i ∈ {1, 2}. Let

φ1: S*
1 → C be the projection from p1 described in § 5.2. Let φ2: S*

2 → C be the corresponding map obtained by
projecting from p2, where we reverse the sense of angles in the xy plane, i.e., we treat an angle from the positive x

axis as positive if it is counterclockwise when looking up at the xy plane from p2.

As before, φ2(∞) = 0. Let p be a point in S*
1 ∩ S*

2, let φ1( p) = r1eiθ1 , and let φ2( p) = r2eiθ2 . By the argument in
§ 5.2, the value of r1 is given by the geometry described in § 5.1 for the unit circle. Therefore, by the argument
given above for φ2 on the unit circle, r2 = 1/r1. Because we reversed the sense of angles in the xy plane, θ2 = −θ1.
Therefore, as in the case of the unit circle, we have

φ2( p) = (1 /r1)e−iθ1 = 1/φ1( p).

5.4. Complex Charts

For each i ∈ {1, 2}, φ i: S*
i → C is a homeomorphism. Therefore, each pair Ci = (S*

i , φ i) is a chart on S. Moreover,
the charts Ci cover S, and the transition functions are φ12(z) = φ21 = 1/z, which is biholomorphic on S*

1 ∩ S*
2.

Therefore {Ci}i ∈ {1,2} is an atlas on S; it has an associated maximal atlas A consisting of all charts on S compatible
with each Ci . The pair C∞ = (S, A) is a Riemann surface called the Riemann sphere.

The following result provides a natural way to think of a meromorphic function as a function that takes its values on
the Riemann sphere.
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cos θ

− sin θ

1 + sin θ

θ

p = (cos θ , sin θ )

q = 


cos θ
1 + sin θ

, 0



p1 = ∞

p2

Figure 6: Projection from p2 = (0, −1), for −π /2 ≤ θ ≤ 0.

Let f : V − P → C be a meromorphic function, where V ⊆ C is a connected open set, and P ⊆ V is a discrete set

of poles of f .  Let A be the maximal atlas consisting of all biholomorphic charts on V ,  and let R be the Riemann

surface (V , A). Define a map g: R → C∞ as follows:

1. For all a ∈ V − P, g(a) = φ −1
1 ( f (a)).

2. For all a ∈ P, g(a) = (0, 0, 1) = ∞.

Then g is a holomorphic map between Riemann surfaces, as defined in § 4.2.

Proof: Let (Ui , φ i) be a chart on V , let (U j , φ j) be a chart on S, and consider the function

gij = φ j g φ −1
i .

Let b ∈ V be a point where gij is defined, and let a = φ −1
i (b).

1. If a ∉ P, then at b we have

gij = φ j φ −1
1 f φ −1

i .

By the definition of the Riemann surface R, φ −1
i is holomorphic at b. By assumption, f is holomorphic at

a = φ −1
1 (b) ∉ P. By the definition of the Riemann surface C∞, φ j must be compatible with φ1, so

φ1 j = φ j φ −1
1 is holomorphic at f (a). Therefore gij is holomorphic at b.

2. Otherwise a ∈ P, and φ2 is defined at g(a) = ∞, so at b we have

gij = φ j φ −1
2 φ2 g φ −1

i .

By compatibility, φ j φ −1
2 and φ −1

i are holomorphic. Therefore it suffices to show that φ2 g is holomorphic at
a. Because the zeros and poles of f are discrete,6 there exists a neighborhood W of a such that on W − {a}
h = φ2 g is defined, and

h(z) = (φ2 φ −1
1 f )(z) = 1/ f (z).

Further, the limit of h(z) as z approaches a is 0. Therefore by the theorem on removable singularities in the
complex plane (Calculus over the Complex Numbers, § 5.2), we can extend h to a holomorphic function on W

by setting h(a) = 0. But this extended function is exactly how we hav e defined φ2 g on W , because we have

φ2(g(a)) = φ2(∞) = 0.

6 The poles are discrete by the theory of Laurent series. See Calculus over the Complex Numbers, § 5.3. The zeros are discrete because the

zeros of a nonconstant holomorphic function are isolated on a pathwise connected open set. See Calculus over the Complex Numbers, § 4.3. An

open subset of C is connected if and only if it is pathwise connected. See [Lang 1999], III, Theorem 1.6.
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Example 1: Let V = C, let P = {0}, and let f : V − P → C be the function z → 1/z, which is holomorphic on
C − {0} and meromorphic on C with a pole at 0. The corresponding function g: R → C∞ maps z to φ −1

1 (1 /z) for
z ∈ C − {0} and maps 0 to ∞, and φ2 g is the identity function on all of C.

Example 2: Let f and g be as in the previous example. We can construct other holomorphic functions by compos-
ing g with other charts on C∞. For example, let B be an open ball in C that does not contain zero, let C j = φ −1

2 (B),
and let φ j : C j → C be the mapping s →φ2(s)2. On B, we hav e φ2 j(z) = z2, and φ2 j is biholomorphic (see § 1).
Therefore (C j , φ j) is a chart on C∞. Further, on B we have

φ j g = φ j φ −1
2 φ2 g = φ2 j id = z2.
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