Definitions for Classical Algebraic Geometry

Robert L. Bocchino Jr.

Revised February 2024

This document defines concepts used in the area of mathematics known as classical algebraic geometry. This area, which flourished in the nineteenth century and reached its apex in the first half of the twentieth century, studies affine and projective varieties. Affine varieties are sets of solutions to equations of the form $p\left(x_{1}, \ldots, x_{n}\right)=0$, where p is a polynomial in n variables over an algebraically closed field. Projective varieties are an extension of this concept. Classical algebraic geometry naturally extends the coordinate geometry that we all studied in high school, e.g., when drawing the graphs of curves such as $y=x^{2}$ or $x^{2}-y=0$ and intersecting these graphs with lines.

In contrast to the classical approach is modern algebraic geometry as developed by Alexander Grothendiek and others starting in the 1950s. Modern algebraic geometry studies schemes, which generalize and extend the concept of a variety. The modern, scheme-theoretic approach to algebraic geometry is extremely powerful, but it is also abstract and technical. Its primary tool is commutative algebra; it is farther removed from the "ordinary" geometry of vector spaces. Classical algebraic geometry provides the geometric intuition that motivates the more abstract modern approach. It is also important, e.g., in the study of complex algebraic curves, which are closely related to the study of Riemann surfaces.

This document assumes that you are familiar with the concepts discussed in my paper Definitions for Commutative Algebra. The motivation for this paper is the same as the motivation for that one: it is useful to collect definitions and basic results in one place for review and study.
Throughout this document, K refers to an algebraically closed field, and n refers to a natural number greater than zero.

1. Affine and Projective Space

In mathematics, a space is a set of points with some common property, e.g., a vector space or a topological space. There are two spaces associated with classical algebraic geometry: affine space and projective space. In this section, we define these spaces.

1.1. Affine Space

In the context of classical algebraic geometry, we refer to the vector space K^{n} as n-dimensional affine space and denote it $\mathbf{A}^{n}(K)$ or just \mathbf{A}^{n}, when the field K is implied. There are at least two reasons to define the term "affine space" instead of just saying K^{n} :

1. It provides a counterpart to projective space, which we define in the next section.
2. When K^{n} comes with a standard topology (e.g., in the case $K=\mathbf{C}$, which provides many of the classical examples in algebraic geometry), it lets us ignore that topology and use a different topology, which we define in § 5.
We write a specified point a of \mathbf{A}^{n} as an n-tuple of coordinates: $a=\left(a_{1}, \ldots, a_{n}\right)=\left\{a_{i}\right\}$. We write a variable point as $z=\left(z_{1}, \ldots, z_{n}\right)=\left\{z_{i}\right\}$. Note that the coordinate indices go from 1 through n.
By tradition, \mathbf{A}^{1} is called the affine line. \mathbf{A}^{2} is called the affine plane.

1.2. Projective Space

Affine space corresponds well to our geometric intuition of points embedded in a vector space. However, affine space has the inconvenient property that a pair of lines may or may not intersect in a point. For example, the lines $z_{1}=0$ and $z_{2}=0$ in \mathbf{A}^{2} intersect in the point $(0,0)$, but the lines lines $z_{1}=0$ and $z_{1}=1$ in \mathbf{A}^{2} do not intersect (i.e., they are parallel lines). This fact makes it inconvenient to count intersections. Therefore we introduce the concept
of n-dimensional projective space, written $\mathbf{P}^{n}(K)$ or just \mathbf{P}^{n}, when the field K is implied. \mathbf{P}^{n} is given by either of the following equivalent definitions:

1. It is the set of lines through the origin in K^{n+1}.
2. It is the set of equivalence classes of points $a \neq 0$ in K^{n+1}, under the relation $a \sim k a$ for any a in K^{n+1} and any $k \neq 0$ in K.
In the case $K=\mathbf{C}$, we may also think of \mathbf{P}^{n} as the set of equivalence classes of points on the unit sphere C centered at the origin in \mathbf{C}^{n+1}, under the relation that identifies each point a with its antipodal point on C, i.e., the point $a^{\prime} \neq a$ on C and on the line L containing 0 and a.
According to definition 2, an element a of \mathbf{P}^{n} is an equivalence class consisting of all tuples $\left(k a_{0}, \ldots, k a_{n}\right)=\left\{k a_{i}\right\}$ for a fixed set of values $\left\{a_{i}\right\}$, not all zero, and all $k \neq 0$. If $\left\{a_{i}\right\}$ is any representative of the class a, then we write $\left[a_{0}, \ldots, a_{n}\right]$ or $\left[a_{i}\right]$ to denote the class, and we call the values a_{i} homogeneous coordinates of the element a. We write $Z=\left[Z_{0}, \ldots, Z_{n}\right]=\left[Z_{i}\right]$ to represent a variable point of \mathbf{P}^{n}, with the understanding that $\left[k Z_{i}\right]$ represents the same point, for any $k \neq 0$. Note that the coordinate indices go from zero through n.
By tradition, \mathbf{P}^{1} is called the projective line. \mathbf{P}^{2} is called the projective plane.
Fix a point a in \mathbf{P}^{n}, and fix an index $j \in[0, n]$.
3. The definitions imply that either $a_{j}=0$ or $a_{j} \neq 0$ for all representatives of a.
4. In the second case, a has a representative $\left\{a_{i} / a_{j}\right\}_{i \in[0, n]}$, and this is the unique representative with 1 as its j coordinate. Moreover, the family of coordinates $\left\{a_{i} / a_{j}\right\}$ for $i \neq j$ defines an element of \mathbf{A}^{n}.
5. Let U_{j} be the set of elements $\left[a_{j}\right]$ of \mathbf{P}^{n} with $a_{j} \neq 0$. By item 2 , we may identify U_{j} with \mathbf{A}^{n}.

The family of sets $\left\{U_{i}\right\}$ defined above is called the standard cover of \mathbf{P}^{n} by affine spaces \mathbf{A}^{n}. Since each element a in \mathbf{P}^{n} has $a_{i} \neq 0$ for some i, the sets U_{i} cover \mathbf{P}^{n}. The identification of $U_{i} \subseteq \mathbf{P}^{n}$ with \mathbf{A}^{n} is a form of projection, since in making the identification we delete a coordinate. This projection motivates the name "projective space."
Returning to the example of the lines $z_{1}=0$ and $z_{1}=1$ in \mathbf{A}^{2} :

1. A general point $\left[Z_{0}, Z_{1}, Z_{2}\right.$] in $U_{0} \subseteq \mathbf{A}^{2}$ is represented by the tuple $\left(1, Z_{1} / Z_{0}, Z_{2} / Z_{0}\right)$ in \mathbf{A}^{3} and corresponds to the point $\left(Z_{1} / Z_{0}, Z_{2} / Z_{0}\right)$ in \mathbf{A}^{2}.
2. Thus we may lift the lines to \mathbf{P}^{2} by substituting $z_{1}=Z_{1} / Z_{0}$ in the equations defining the lines. When we do this, the equations become $Z_{1}=0$ and $Z_{1}=Z_{0}$. The projections of these lines in \mathbf{P}^{2} onto U_{0} are the original lines in \mathbf{A}^{2}.
3. Whereas the lines in \mathbf{A}^{2} do not intersect, the corresponding lines in \mathbf{P}^{2} intersect in the point $[0,0,1]$.

If we think of the space defined by $Z_{0}=1$ as a copy S of \mathbf{A}^{2} in \mathbf{P}^{2}, then the complementary space $\mathbf{P}^{2}-S$ defined by $Z_{0}=0$ is a copy of the projective line \mathbf{P}^{1}. Let $L=\mathbf{P}^{1}$. Then $\mathbf{P}^{2}=S \cup L$. With respect to S, the line L is "at infinity," in the sense that parallel lines in S, when lifted to \mathbf{P}^{2}, intersect at a point on L.
More generally, when we set $Z_{0}=1$ in \mathbf{P}^{n}, the remaining $n-1$ coordinates define a point in \mathbf{A}^{n}. When we set $Z_{0}=0$, the remaining $n-1$ coordinates define a point in \mathbf{P}^{n-1}. Therefore we can think of \mathbf{P}^{n} as a copy of \mathbf{A}^{n} together with a copy of \mathbf{P}^{n-1} "at infinity."

2. Affine and Projective Varieties

In this section we define the main objects of study in classical algebraic geometry: affine and projective varieties.

2.1. Affine Varieties

We write $K[z]$ to denote the polynomial ring $K\left[z_{1}, \ldots, z_{n}\right]$, and we write $p(z)$ to denote a polynomial $p\left(z_{1}, \ldots, z_{n}\right)$ in $K[z]$.
Let $p(z)$ be a polynomial in $K[z]$. Then p defines a function $p: \mathbf{A}^{n} \rightarrow K$ given by $a \mapsto p(a)$. The zero set or zero locus of p is the set of elements a in \mathbf{A}^{n} such that $p(a)=0$.
Let $F=\left\{p_{\alpha}\right\}$ be a family of polynomials in $K[z]$. The zero set or zero locus of F is the set of points a in \mathbf{A}^{n} such that a is in the zero set of each p_{α}.
An affine variety is a set $V \subseteq \mathbf{A}^{n}$ such that V is the zero set of a family of polynomials $F=\left\{p_{\alpha}\right\}$ in $K[z]$. We write $V(F)$ to denote the zero set of F. We also say that $V(F)$ is the affine variety generated by or cut out by the
polynomials F.
The empty set is an affine variety. For example, it is the zero set of the polynomial 1 , where 1 is the multiplicative identity of K. The space \mathbf{A}^{n} is also an affine variety. It is the zero set of the polynomial 0 .

2.2. Projective Varieties

We write $K[Z]$ to denote the polynomial ring $K\left[Z_{0}, \ldots, Z_{n}\right]$, and we write $P(Z)$ to denote a polynomial $P\left(Z_{0}, \ldots, Z_{n}\right)$ in $K[Z]$. Recall that $P(Z)$ is homogeneous if every term in $P(Z)$ has d variable factors for some $d \geq 0$. The number d is called the degree of the homogeneous polynomial. For example, the polynomial $Z_{1}^{2}-Z_{0} Z_{2}$ is homogeneous of degree 2 .
Let $P(Z)$ be a polynomial in $K[Z]$. In general, P does not define a function from \mathbf{P}^{n} to K. However, if P is homogeneous, then the zero set of P is well defined, because the property $P(a)=0$ does not depend on the choice of homogeneous coordinates. Indeed, if p has degree d, then we have $P(k a)=k^{d} P(a)$ for any $k \neq 0$, so $P(a)=0$ if and only if $P(k a)=0$. Similarly, the zero set of a family of homogeneous polynomials in $K[Z]$ is well defined.
A projective variety is a set $V \subseteq \mathbf{P}^{n}$ such that V is the zero set of a family F of homogeneous polynomials $F=\left\{P_{\alpha}\right\}$ in $K[Z]$. We write $V(F)$ to denote the zero set of F. We also say that $V(F)$ is the projective variety generated by or cut out by the polynomials F.
The empty set is a projective variety. For example, it is the zero set of the polynomials $\left\{Z_{i}=0\right\}_{i \in[0, n]}$, since there is no point a of \mathbf{P}^{n} such that all the homogeneous coordinates of a are zero. The space \mathbf{P}^{n} is also a projective variety. It is the zero set of the homogeneous polynomial 0 .

2.3. The Relationship Between Affine and Projective Varieties

Let $V \subseteq \mathbf{A}^{n}$ be an affine variety. For each i, V is the intersection of $U_{i} \subseteq \mathbf{P}^{n}$ (§1.2) with a projective variety $W_{i} \subseteq \mathbf{P}^{n}$. Indeed, suppose that V is generated by the polynomials $\left\{p_{\alpha}\right\}$. For each α, construct a homogeneous polynomial $P_{\alpha}(Z)$ as follows:

1. Renumber the variables in p_{α} from 0 through n, skipping i.
2. Replace each variable z_{j} in the result of step 2 with Z_{j} / Z_{i}.
3. Multiply every term in the result of step 3 by the highest power of Z_{i} appearing in any term.

For example, let $p_{\alpha}(z)=z_{1}+z_{2}^{2}$, and let $i=1$. Then step 1 yields $z_{0}+z_{2}^{2}$, step 2 yields $\left(Z_{0} / Z_{1}\right)+\left(Z_{2} / Z_{1}\right)^{2}$, and step 3 yields $P_{\alpha}(Z)=Z_{0} Z_{1}+Z_{2}^{2}$. Now let W_{i} be the zero set in \mathbf{P}^{n} of the polynomials $\left\{P_{\alpha}\right\}$. Then $V=U_{i} \cap W_{i}$. Indeed, if we project onto U_{i} by setting $Z_{i}=1$ and renumbering the variables, then each P_{α} becomes p_{α}.
Let $V \subseteq \mathbf{P}^{n}$ be a projective variety. The intersection of V with any of the sets $U_{i} \subseteq \mathbf{P}^{n}$ is an affine variety in \mathbf{A}^{n}. Indeed, if $P_{\alpha}(Z)$ is a homogeneous polynomial of degree d in $K[Z]$, then when $Z_{i} \neq 0$, the zero set of P_{α} equals the zero set of $P_{\alpha}(Z) / Z_{i}^{d}$; thus we may divide each of the d factors of each term of P_{α} by Z_{i}. After doing this we may replace Z_{i} / Z_{i} with 1 , replace Z_{j} / Z_{i} with z_{j}, and renumber the variables z_{j} from 1 to n; then $V \cap U_{i}$ is the zero set of the resulting polynomials $p_{\alpha}(z)$.

2.4. Subvarieties; Irreducible Varieties

If V and W are affine varieties and $W \subseteq V$ as a set, then we say that W is a subvariety of V. The analogous definition holds for projective varieties V and W.
An affine variety V is irreducible if it is nonempty and it cannot be written as the union $V=V_{1} \cup V_{2}$ for any pair V_{1} and V_{2} of affine varieties, neither of which is equal to V. The analogous definition holds for projective varieties. For example:

1. \mathbf{A}^{n} is irreducible, because the only polynomial in $K[z]$ that is zero on all of \mathbf{A}^{n} is the zero polynomial.
2. \mathbf{P}^{n} is irreducible, because the only homogeneous polynomial in $K[Z]$ that is zero on all of \mathbf{P}^{n} is the zero polynomial.
The terminology used here is consistent with, e.g., [Harris 1992]. Some sources (e.g., [Fulton 2008], [Hartshorne 1977]) require that an affine or projective variety be irreducible. In these sources, what we have defined as an affine variety is called an affine algebraic set; and similarly for projective varieties. I prefer the terminology used here because it is more general: definitions and results that pertain to varieties here also apply to algebraic sets. When we need a variety to be irreducible, we will say so explicitly.

3. Ideals Corresponding to Affine and Projective Varieties

In this section we explore the connection between affine and projective varieties and polynomial ideals.

3.1. Affine Varieties

Fix a set $S \subseteq \mathbf{A}^{n}$. We write $I(S)$ to denote the set of polynomials p in $K[z]$ that vanish on S, i.e., $p(a)=0$ for all points a in S. Observe the following:

1. $I(S)$ is not empty, because the polynomial 0 vanishes everywhere on \mathbf{A}^{n}.
2. If p is a member of $I(S)$, then $q p$ is a member of S for any q in $K[z]$, because for any a in S we have $(q p)(a)=q(a) p(a)=q(a) \cdot 0=0$.
Therefore $I(S)$ is an ideal of $K[z]$. We call $I(S)$ the vanishing ideal corresponding to the set S.
Fix an ideal I of $K[z]$. Recall the following definitions (see Definitions for Commutative Algebra, § 6):
3. The radical of I, written $\operatorname{rad}(I)$, is the ideal of $K[z]$ consisting of all polynomials p such that $p^{m} \in I$ for some $m>0$. For example, the radical of the principal ideal $\left(x^{2}\right)$ is (x).
4. We say that I is radical if $\operatorname{rad}(I)=I$. For example, (x) is radical, and $\left(x^{2}\right)$ is not.

Fix a subset $S \subseteq \mathbf{A}^{n}$, a point a in S, and a polynomial $p \in I(S)$. Suppose that $p=q^{n}$ for some $n>1$. Because $p(a)=0$, and K is an integral domain, we must have $q(a)=0$, i.e., $q \in I(S)$. Therefore $I(S)$ is a radical ideal.
Fix an ideal I of $K[z]$.

1. By definition, the zero set of the polynomials in I is an affine variety (§ 2). We denote this affine variety $V(I)$.
2. We have $I(V(I))=\operatorname{rad}(I)$. This statement is the affine version of the Hilbert Nullstellensatz (in English, "zero statement") (proof omitted). It establishes a one-to-one correspondence between affine varieties $V \subseteq \mathbf{A}^{n}$ and radical ideals $I \subseteq K[z]$.
3. $V(I)$ is irreducible if and only if I is a prime ideal (proof omitted).

Fix an ideal I of $K[z]$. Then I is finitely generated, i.e., there exists a finite family F of polynomials in $K[z]$ such F generates I. This is the Hilbert basis theorem (proof omitted).
Fix a family F of polynomials in $K[z]$, not necessarily finite. We write $I(F)$ to denote the ideal generated by F.

1. We have $V(I(F))=V(F)$. Indeed, if a is in the zero set of all the polynomials in $I(F)$, then it is in the zero set of all the polynomials in $F \subseteq I(F)$. On the other hand, each element of $I(F)$ is a polynomial $p=\sum_{i} q_{i} p_{i}$ with $p_{i} \in F$ for all i; so if a is in the zero set of all the p_{i}, then $p(a)=0$.
2. By the Hilbert basis theorem, $V(I(F))=V\left(I\left(F^{\prime}\right)\right)$, where F^{\prime} is a finite family of polynomials in $K[z]$. By item $1, V(F)=V(I(F))=V\left(I\left(F^{\prime}\right)\right)=V\left(F^{\prime}\right)$. Therefore every affine variety is generated by a finite family of polynomials.

3.2. Projective Varieties

Fix an ideal I in $K[Z]$. If I is generated by a set of homogeneous polynomials, then we call I a homogeneous ideal.
Fix a set $S \subseteq \mathbf{P}^{n}$. We write $I(S)$ to denote the homogeneous ideal generated by the homogeneous polynomials P that vanish on S, i.e., $P(a)=0$ for all a in S. We call $I(S)$ the vanishing ideal corresponding to S. By the same argument that we made in $\S 3.1$ for affine varieties, $I(S)$ is a radical ideal.
Let I be a homogeneous ideal of $K[Z]$.

1. Let F be a family of homogeneous polynomials that generate I. By definition, the zero set of F is a projective variety (§ 2). We denote this projective variety $V(F)$.
2. Let F_{1} and F_{2} be two such generating families. Then each element of F_{1} may be written as a sum of terms, each of which is a polynomial in $K[Z]$ times a polynomial in F_{2}. Therefore an element in the zero set of F_{2} is in the zero set of F_{1} and vice versa, so the set $V(F)$ is independent of the generators chosen. We write $V(I)$ to denote the projective variety $V(F)$ for any generators F of I.
3. We have $I(V(I))=\operatorname{rad}(I)$. This statement is the projective version of the Hilbert Nullstellensatz (proof omitted). It establishes a one-to-one correspondence between projective varieties $V \subseteq \mathbf{P}^{n}$ and radical
homogeneous ideals $I \subseteq K[Z]$.
4. $V(I)$ is irreducible if and only if I is a prime ideal (proof omitted).

By the Hilbert basis theorem, a homogeneous ideal I of $K[Z]$ is finitely generated.
By the same arguments we made in § 2.1 for affine varieties:

1. For any family F of homogeneous polynomials, $V(I(F))=V(F)$, where $I(F)$ is the homogeneous ideal generated by F.
2. By the Hilbert basis theorem, every projective variety is generated by a finite family of homogeneous polynomials.

3.3. Irreducible Components

Any nonempty affine variety V may be uniquely expressed as a finite union of irreducible affine varieties $\left\{V_{i}\right\}$ with V_{i} not included in V_{j} for $i \neq j$; and similarly for projective varieties (proof omitted). This statement follows from a general theorem on the primary decomposition of ideals in Noetherian rings (see Definitions for Commutative Alge$b r a, \S \S 17$ and 20). The varieties V_{i} are called the irreducible components of V.
For example, let $V \subseteq \mathbf{A}^{2}$ be the variety generated by $z_{1} z_{2}$. It is a union of two lines. The irreducible components of V are the lines $z_{1}=0$ and $z_{2}=0$.

4. The Dimension of an Affine or Projective Variety; Curves and Surfaces

Due to the deep connection between the algebra of $K[z]$ and the geometry of affine varieties in \mathbf{A}^{n}, there are many equivalent definitions of the dimension of an affine variety; and similarly for projective varieties. Here we give the most elementary definition of the dimension of a variety; we will give other definitions in $\S 13$, after we have developed the concepts necessary to state them.

4.1. Affine Varieties

Let $V \subseteq \mathbf{A}^{n}$ be a nonempty affine variety. We define the dimension of V, written $\operatorname{dim} V$, to be the maximal length m over all chains

$$
V_{0} \subset V_{1} \subset \cdots \subset V_{m} \subseteq V,
$$

where each V_{i} is an irreducible affine variety, and \subset denotes strict inclusion of sets. For example:

1. The dimension of a point is zero. For example, $\{(1,1)\}$ is an irreducible affine subvariety of \mathbf{A}^{2} of dimension zero: it is the zero set of the polynomials $z_{1}-1$ and $z_{2}-1$.
2. $\operatorname{dim} \mathbf{A}^{n}=n$. Each of the subvarieties given by $z_{i}=0$, for $i \in[1, n]$, is is a copy of \mathbf{A}^{n-1}. Each of these copies is an irreducible subvariety of dimension $n-1$.
3. Let V be the zero set of $p(z)=z_{1}^{2}-z_{2}$ in \mathbf{A}^{2}. Then V has dimension one. The irreducible affine subvarieties of dimension zero are the points of V.
We define the dimension of the empty affine variety to be -1 .

4.2. Projective Varieties

Let $V \subseteq \mathbf{P}^{n}$ be a nonempty projective variety. We define the dimension of V, written $\operatorname{dim} V$, to be the maximal length m over all chains

$$
V_{0} \subset V_{1} \subset \cdots \subset V_{m} \subseteq V,
$$

where each V_{i} is an irreducible projective variety, and \subset denotes strict inclusion of sets. For example:

1. The dimension of a point is zero. For example, $\{[1,1,1]\}$ is an irreducible projective subvariety of \mathbf{P}_{2} of dimension zero: it is the zero set of the polynomials $Z_{1}-Z_{0}$ and $Z_{2}-Z_{0}$.
2. $\operatorname{dim} \mathbf{P}^{n}=n$. Each of the subvarieties given by $Z_{i}=0$, for $i \in[1, n]$, is a copy of \mathbf{P}^{n-1}. Each of these copies is an irreducible subvariety of dimension $n-1$.
3. Let V be the zero set of $P(Z)=Z_{1}^{2}-Z_{0} Z_{2}$ in \mathbf{P}^{2}. Then V has dimension one. The irreducible projective subvarieties of dimension zero are the points of V.

We define the dimension of the empty projective variety to be -1 .

4.3. Irreducible Components

Let V be a nonempty affine or projective variety, and let $\left\{V_{i}\right\}$ be its irreducible components (§3.3).

1. From the definitions in $\S \S 4.1$ and 4.2 , it is clear that the dimension of V is the maximum of the dimensions of the V_{i}.
2. If all the V_{i} have the same dimension d, then we say that V has pure dimension d.
3. Let p be a point of V. We define the local dimension of V at p, written $\operatorname{dim}_{p} V$, to be the maximum of the dimensions of the irreducible components V_{i} that contain p.

4.4. Curves and Surfaces

By tradition, we associate the following terms with the dimension of an affine or projective variety V :

1. A variety V of pure dimension one ($\S 4.3$) is called a curve. If V is generated by linear polynomials, then we call it a line.
2. A curve in \mathbf{A}^{2} is called an affine plane curve. A curve in \mathbf{P}^{2} is called a projective plane curve.
3. A variety of pure dimension $n-1$ in \mathbf{A}^{n} or in \mathbf{P}^{n} is called a hypersurface. An affine or projective variety V is a hypersurface if and only if it is generated by a single polynomial (proof omitted). A hypersurface in \mathbf{A}^{3} or in \mathbf{P}^{3} has dimension two and is called a surface.
4. A hypersurface generated by a linear polynomial is called a hyperplane. For example, the set of points in \mathbf{A}^{n} such that $z_{1}=0$ is a hyperplane. A hyperplane in \mathbf{A}^{3} or in \mathbf{P}^{3} has dimension two and is called a plane.
5. A d-dimensional variety generated by linear polynomials is called a linear subspace or a d-plane. Note that a plane in \mathbf{A}^{3} or \mathbf{P}^{3} is a 2-plane.
Curves in affine and projective space are often grouped together under the subject of algebraic curves. See, e.g., [Fulton 2008]. Algebraic curves over the complex numbers (i.e., for $K=\mathbf{C}$) are called complex algebraic curves. See, e.g., [Kirwan 1992]. Complex algebraic curves have complex dimension one but real dimension two, so they are sometimes treated as topological surfaces, e.g., in the study of Riemann surfaces.

5. The Zariski Topology

Recall that a topological space is a pair (S, O), where S is a set and O is a set of subsets of S satisfying the following axioms:
T1. The empty set and S are elements of O.
T2. Any union of elements of O is an element of O.
T3. Any intersection of finitely many elements of O is an element of O.
The set O is called a topology on S. The elements of O are called the open sets of the topology. A set $T \subseteq S$ is closed if its complement $S-T$ in S is open; the empty set and S are both closed (and both open). For more information on topological spaces, see $\S 23$ of Definitions for Commutative Algebra.
In this section, we use the geometry of affine and projective varieties to define a topology called the Zariski topology on affine and projective space.

5.1. Affine Space

Let O be the set of subsets T of \mathbf{A}^{n} such that the complement $\mathbf{A}^{n}-T$ is an affine variety. In other words, let O be the topology on \mathbf{A}^{n} in which the closed sets are the affine varieties. Then O is a topology on \mathbf{A}^{n} :
T1. \mathbf{A}^{n} is the affine algebraic variety generated by the zero ideal, and \varnothing is the affine algebraic variety generated by the ideal $K[z]$. Therefore $\varnothing=\mathbf{A}^{n}-\mathbf{A}^{n}$ and $\mathbf{A}^{n}=\mathbf{A}^{n}-\varnothing$ are open sets.
T2. By taking complements, it suffices to show that any intersection of closed sets is a closed set. Let $\left\{V_{i}\right\}$ be a family of closed sets, i.e., affine varieties. Each V_{i} is generated by a family of polynomials F_{i}. Further, $\bigcap_{i}^{\cap} V_{i}=\underset{i}{\cap} V\left(F_{i}\right)=V\left(\cup_{i}^{\cup} F_{i}\right)$. Therefore ${\underset{i}{i}}^{n} V_{i}$ is an affine variety, i.e., closed.

T3. By taking complements, it suffices to show that any union of finitely many closed sets is a closed set. Then by induction, it suffices to show that the union $V_{1} \cup V_{2}$ of any two affine varieties is an affine variety. Let $V_{1}=V\left(F_{1}\right)$ and $V_{2}=V\left(F_{2}\right)$ for families of polynomials $F_{1}=\left\{p_{\alpha}\right\}$ and $F_{2}=\left\{q_{\beta}\right\}$. Then the union $V_{1} \cup V_{2}$ is the affine variety $V(F)$, where F is the set of all $p_{\alpha} q_{\beta}$ for p_{α} in F_{1} and q_{β} in F_{2}. Indeed, if a point a is in the zero set of F_{1} or of F_{2}, then $\left(p_{\alpha} q_{\beta}\right)(a)=0$ for all α and β, so $a \in V(F)$. On the other hand, if a is outside the zero sets of both F_{1} and F_{2}, then there exist p_{α} and q_{β} such that $p_{\alpha}(a) \neq 0$ and $q_{\beta}(a) \neq 0$; in this case $\left(p_{\alpha} q_{\beta}\right)(a) \neq 0$, so $a \notin V(F)$.
We call O the Zariski topology on \mathbf{A}^{n}.
Let (S, O) be a topological space. A basis for the topology O is a set B of subsets of S such that any open set may be written as a union of sets in B.

Denote by $V(p)$ the affine variety generated by the polynomial p. Because every affine variety is generated by a set of polynomials, every open set in the Zariski topology is given by a union of open sets $\mathbf{A}^{n}-V(p)$ for polynomials p. Therefore the open sets $\mathbf{A}^{n}-V(p)$, as p ranges over $K[z]$, form a basis for the Zariski topology. These sets are called the distinguished open sets of \mathbf{A}^{n}.
Fix a subset S of \mathbf{A}^{n}. We give S the subset topology, i.e., the topology in which a subset $T \subseteq S$ is open if and only if it is the intersection of S with an open set of \mathbf{A}^{n}. When a subset T of S is open (respectively closed) in the subset topology on S, we say that T is open in S (respectively closed in S).
Fix an affine variety V.

1. The distinguished open sets of V are the intersections of V with the distinguished open sets of \mathbf{A}^{n}, i.e., the sets $V-V(p)$ for polynomials p in $K[z]$. These sets are open in V.
2. A subset T of V is closed in V if and only if it is closed in \mathbf{A}^{n}, i.e., it is an affine variety. Indeed, fix a subset T of V. If T is closed in \mathbf{A}^{n}, then $V-T$ is the intersection of the open set $\mathbf{A}^{n}-T$ with V, so $V-T$ is open in V, so T is closed in V. On the other hand, if T is closed in V, then $V-T$ is open in V, so it is the intersection of V with an open set in \mathbf{A}^{n}. Therefore T is the intersection of V with a closed set in \mathbf{A}^{n}, i.e. an affine variety W. Thus T is the affine variety $V \cap W$.

Let (S, O) be a topological space, and fix a subset T of S.

1. The closure of T in S is the intersection of all the closed sets of S that contain T.
2. T is dense in S if its closure in S is all of $S . T$ is dense in S if and only if it has a nonempty intersection with every nonempty open subset of S. Indeed, fix a nonempty open subset U of S. If T has empty intersection with U, then $S-U$ is a closed set containing T and not equal to S, so T is not dense in S. On the other hand, if T is not dense in S, then there exists a closed set U containing T and not equal to S, and $S-U$ is a nonempty open set that has empty intersection with T.
Let V be an irreducible affine variety.
3. For any two nonempty subsets T and U of V that are open in $V, T \cap U \neq \varnothing$. Indeed $W_{1}=V-T$ and $W_{2}=V-U$ are closed sets in V, so they are affine varieties. Further, $W_{1} \cup W_{2}=V-(T \cap U)$, so if $T \cap U=\varnothing$, then $V=W_{1} \cup W_{2}$, and so V is not irreducible.
4. Every nonempty subset T of V that is open in V is dense in V. This statement follows from item 1 and from the fact, shown above, that T is dense in V if and only if it has nonempty intersection with every nonempty open subset U of V.
In particular, these facts hold when $V=\mathbf{A}^{n}$ and $T \subseteq \mathbf{A}^{n}$ is an open set.

5.2. Projective Space

Let O be the set of subsets T of \mathbf{P}^{n} such that the complement $\mathbf{P}^{n}-T$ is a projective variety. In other words, let O be the topology on \mathbf{P}^{n} in which the closed sets are the projective varieties. Then the same arguments that we made in $\S 5.1$ for the Zariski topology on \mathbf{A}^{n} establish that O is a topology on \mathbf{P}^{n}. We call O the Zariski topology on \mathbf{P}^{n}. All the definitions and facts stated in $\S 5.1$ apply to the Zariski topology on \mathbf{P}^{n}, after replacing "affine" with "projective," \mathbf{A}^{n} with \mathbf{P}^{n}, and polynomials $p(z)$ in $K[z]$ with homogeneous polynomials $P(Z)$ in $K[Z]$.

6. Quasi-Affine and Quasi-Projective Varieties; General Varieties

In this section we use the Zariski topology (§5) to generalize the concepts of affine and projective varieties.

6.1. Quasi-Affine Varieties

Fix an affine variety V. A subset $W \subseteq V$ that is open in V is called a quasi-affine variety.

1. Every affine variety V is a quasi-affine variety. Indeed, by the definition of the subset topology, V is open in V.
2. There exist quasi-affine varieties W such that W is not an affine variety. For example $X=\mathbf{A}^{2}-\{(0,0)\}$ is a quasi-affine variety, because it is the complement of the zero set of the polynomials z_{1} and z_{2}. However, X is not an affine variety (proof omitted).
Fix an affine variety V and a quasi-affine variety $W \subseteq V$. Then any set $U \subseteq W$ that is open in W is a quasi-affine variety. Indeed, since W is open in $V, W=V \cap X$ for some set X that is open in \mathbf{A}^{n}. Since U is open in W, U is the intersection of W and an open set of V, i.e., $U=W \cap(V \cap Y)$ for some set Y that is open in \mathbf{A}^{n}. Therefore

$$
U=(V \cap X) \cap(V \cap Y)=V \cap(X \cap Y)=V \cap Z
$$

where $Z=X \cap Y$ is open in \mathbf{A}^{n}, so U is open in V. Thus any definition or result that is valid for a quasi-affine variety W is also valid for any set $U \subseteq W$ that is open in W.

6.2. Quasi-Projective Varieties

Fix a projective variety V. A subset $W \subseteq V$ that is open in V is called a quasi-projective variety.

1. Every affine variety $V \subseteq \mathbf{A}^{n}$ is a quasi-projective variety. Indeed, as we observed in $\S 2.3, V$ is the intersection of the set U_{i} with a projective variety $W_{i} \subseteq \mathbf{P}^{n} . U_{i}$ is open in \mathbf{P}^{n}, because it is the complement of the zero locus of the polynomial Z_{i}. Therefore V is open in W_{i}.
2. Every projective variety V is a quasi-projective variety. Indeed, by the definition of the subset topology, V is open in V.
3. There exist quasi-projective varieties W such that W is neither an affine variety nor a projective variety. For example $X=\mathbf{A}^{2}-\{(0,0)\}$ is a quasi-projective variety, because it is the intersection of U_{0} and the complement of $\{[1,0,0]\}$ in \mathbf{P}^{2}. However, X is neither an affine variety nor a projective variety (proof omitted).
Fix a projective variety V and a quasi-projective variety $W \subseteq V$.
4. By the argument that we made in $\S 6.1$ for quasi-affine varieties, any set $U \subseteq W$ that is open in W is a quasiprojective variety. Thus any definition or result that is valid for a quasi-projective variety W is also valid for any set $U \subseteq W$ that is open in W.
5. Let $\left\{U_{i}\right\}$ be the standard cover of \mathbf{P}^{n} by copies of \mathbf{A}^{n} defined in $\S 1.2$. Then for each $i, W \cap U_{i}$ is a quasiaffine variety. Indeed, write $W=V \cap X$ for X open in \mathbf{P}^{n}. Then we have

$$
\begin{equation*}
W \cap U_{i}=\left(V \cap U_{i}\right) \cap\left(X \cap U_{i}\right) . \tag{1}
\end{equation*}
$$

By $\S 2.3, V \cap U_{i}$ is an affine variety; and X and U_{i} are open in \mathbf{P}^{n}. Therefore by (1), $W \cap U_{i}$ is an open subset of the affine variety $V \cap U_{i}$.

6.3. General Varieties

Hereafter, when we use the term variety without qualification, we shall mean any one of an affine, quasi-affine, projective, or quasi-projective variety. A closed variety will mean an affine or projective variety.
A variety is irreducible if its closure is irreducible as defined in $\S 2.4$. From $\S 3.3$, we see that every variety is a finite union of irreducible components.

7. Coordinate Rings; Regular Functions and Local Rings

In this section we define the coordinate ring of an affine or projective variety. We also define the related concepts of regular functions and local rings for varieties.

7.1. Affine and Quasi-Affine Varieties

In this section, $V \subseteq \mathbf{A}^{n}$ is an affine variety.
A coordinate function on V is a function $\left.p\right|_{V}: V \rightarrow K$ obtained by choosing a polynomial p in $K[z]$, considering p as a function from \mathbf{A}^{n} to K, and restricting the domain of p to V.
We define the coordinate ring of V, written $K[V]$, as follows:

$$
K[V]=K[z] / I(V)
$$

That is, $K[V]$ is the set of polynomials p in $K[z]$, modulo the relation that $p \sim q$ if $p-q$ is in the vanishing ideal $I(V)$, i.e., $(p-q)(a)=0$ for all $a \in V$. This is true if and only if $\left.p\right|_{V}=\left.q\right|_{V}$. Therefore the elements of $K[V]$ are exactly the coordinate functions on V.
In order to simplify the wording, we will refer to elements of $K[V]$ as polynomials even though they are really equivalence classes of polynomials. For example, when we say "the polynomial p in $K[V]$ " we will mean "the equivalence class $[p]=p+I(V)$ in $K[V]$ of the polynomial p in $K[z]$."
The maximal ideals of $K[V]$ correspond exactly to the vanishing ideals of points of V. That is, an ideal $I \subseteq K[V]$ is maximal if and only if, for some $a \in V, I$ is the ideal $I(\{a\}) / I(V)$ of coordinate functions in $K[V]$ that vanish at a (proof omitted). Note the following:

1. I is the ideal generated by the polynomials $\left\{z_{i}-a_{i}\right\}$, where $\left\{a_{i}\right\}$ are the coordinates of a. For example, in \mathbf{A}^{2}, the ideal $I(\{a\})$ for $a=(1,2)$ is generated by the polynomials $\left\{z_{1}-1, z_{1}-2\right\}$.
2. In \mathbf{A}^{1}, this statement follows from the fundamental theorem of algebra: for K algebraically closed, every monic polynomial in $K\left[z_{1}\right]$ is a product of factors $\left\{z_{1}-k_{j}\right\}$. Since $K\left[z_{1}\right]$ is a principal ideal domain, the maximal ideals are exactly the principal ideals $\left(z_{1}-k\right)$ for $k \in K$.
We write \mathbf{m}_{a} to denote the maximal ideal of $K[V]$ corresponding to the point a.
Let $U \subseteq V$ be a quasi-affine variety (§6.1). We define the coordinate ring $K[U]$ to be the coordinate ring $K[W]$, where W is the closure of U.
Let $U \subseteq V$ be a quasi-affine variety, and let $f: U \rightarrow K$ be a function.
3. For any point a in U, we say that f is regular at a if there exist a set $W \subseteq U$ open in U containing a and polynomials p and q in $K[z]$ such that, for all b in W, (a) $q(b) \neq 0$ and (b) $f(b)=p(b) / q(b)$. In this case we say that f is represented by the expression p / q on W.
4. We say that f is regular on U if it is regular at every point a in U.
5. Let p and q be polynomials in $K[z]$. Then there exists a set $W \subseteq U$, open in U, such that p / q represents a regular function $f: W \rightarrow K$. Indeed, let X be the set of points a in U such that $q(a)=0$. Then X is an affine variety, so its complement $\mathbf{A}^{n}-X$ is open. Let $W=U \cap\left(\mathbf{A}^{n}-X\right)$. Then W is open, and $q(a) \neq 0$ for a in W, so p / q represents a regular function on W.

By taking $U=V$, we can apply the definition of a regular function to the affine variety V. In this case the function $f: V \rightarrow K$ is regular on V if and only if f is represented by $p / 1$ on V for some polynomial p in $K[V]$ (i.e., is represented by $(p+q I(V)) / 1$ for some polynomial p and all polynomials q in $K[z]$) (proof omitted).
Let U be a distinguished open subset $V-V(q)$ for some polynomial q in $K[z]$ (see $\S 5.1$).

1. Let R be the set of functions regular on U. It is a ring under the standard rules for adding and multiplying polynomial fractions, i.e.,

$$
\frac{p_{1}}{q_{1}}+\frac{p_{2}}{q_{2}}=\frac{p_{1} q_{2}+p_{2} q_{1}}{q_{1} q_{2}} \quad \frac{p_{1}}{q_{1}} \frac{p_{2}}{q_{2}}=\frac{p_{1} p_{2}}{q_{1} q_{2}} .
$$

2. Let $[q]$ be the equivalence class of q in $K[V]$. The set $S=\left\{1,[q],[q]^{2}, \ldots\right\}$ of powers of $[q]$ is a multiplicative monoid. Therefore we may form the ring of fractions $S^{-1} K[V]$. See Definitions for Commutative Algebra, § 14. This ring is exactly the ring R (proof omitted).

Fix a point $a \in V$.

1. As noted above, the ideal of polynomials in $K[V]$ vanishing at a is the maximal ideal \mathbf{m}_{a}.
2. Every maximal ideal is prime, so \mathbf{m}_{a} is prime, and therefore its complement $S=K[V]-\mathbf{m}_{a}$ is a multiplicative monoid. See Definitions for Commutative Algebra, § 14. S is the set of polynomials that do not vanish at a.
3. We may form $S^{-1} K[V]$, which is the localization of $K[V]$ with respect to the maximal ideal \mathbf{m}_{a}. See Definitions for Commutative Algebra, § 14. This ring is called the local ring of V at a and denoted $\boldsymbol{O}_{a}(V)$. It contains all expressions p / q with p and q in $K[V]$ and $q(a) \neq 0$, where p^{\prime} / q^{\prime} represents the same element if $p q^{\prime}-p^{\prime} q$ is a zero divisor in $K[V]$. If V is irreducible, then $K[V]$ is an integral domain; in this case $p q^{\prime}-p^{\prime} q$ is a zero divisor if and only if $p q^{\prime}-p^{\prime} q=0$, i.e., $p q^{\prime}=p^{\prime} q$.
4. Let F be the set of all pairs (U, f), where U is open in V, U contains a, and $f: U \rightarrow K$ is a regular function. Construct a set G from F by identifying pairs of elements that satisfy the following equivalence relation: $(U, f) \sim(W, g)$ if there exists an open set $X \subseteq U \cap W$ such that $a \in X$, and f and g agree on X. The elements of G are called regular function germs. ${ }^{1}$
5. If V is irreducible, then the set G is exactly the ring $\boldsymbol{O}_{a}(V)$. Indeed, a regular function germ at a is represented by an expression p / q, with p and q in $K[V]$ and $q(a) \neq 0$. Another expression p^{\prime} / q^{\prime} represents the same germ if

$$
p^{\prime}(b) / q^{\prime}(b)=p(b) / q(b)
$$

for all b in an open neighborhood of a. This is true if and only if $p q^{\prime}-p^{\prime} q=0$ in $K[V]$. But this is exactly the rule for constructing the ring $S^{-1} K[V]$.

7.2. Projective and Quasi-Projective Varieties

In this section, $V \subseteq \mathbf{P}^{n}$ is a projective variety.
We define the coordinate ring of V, written $K[V]$, as follows:

$$
K[V]=K[Z] / I(V)
$$

That is, $K[V]$ is the set of polynomials p in $K[Z]$, modulo the relation that $p \sim q$ if $p-q$ is in the homogeneous ideal $I(V)$. Again we call the elements of $K[V]$ polynomials and freely write p instead of $[p]$ to refer to elements of $K[V]$ represented by polynomials p in $K[Z]$. Note that, unlike in the affine case discussed in $\S 7.1$, the elements of the coordinate ring $K[V]$ are not well-defined functions on V : in general, $p(a) \neq p(k a)$ where a is a point in \mathbf{A}^{n+1} that represents a point on V.
The polynomial ring $K[Z]$ is a graded ring. See Definitions for Commutative Algebra, § 25. It is also a graded $K[Z]$-module, and this graded $K[Z]$-module is a graded K-algebra. The coordinate ring $K[V]$ is also a graded ring, a graded $K[V]$-module, and a graded K-algebra.
Let $U \subseteq V$ be a quasi-projective variety (§6.2). We define the coordinate ring $K[U]$ to be the coordinate ring $K[W]$, where W is the closure of U.

Let $U \subseteq V$ be a quasi-projective variety, let $f: U \rightarrow K$ be a function, and let $\left\{U_{i}\right\}$ be the standard open cover of \mathbf{P}^{n}. We say that f is regular on U if, for every $i,\left.f\right|_{U \cap U_{i}}$ is regular on $U \cap U_{i}$ as defined in $\S 7.1$. By $6.2, U \cap U_{i}$ is a quasi-affine variety, so the condition of the definition in $\S 7.1$ is satisfied. Note also the following:

1. If the quasi-projective variety U is an affine variety (see $\S 6.2$), then we have $U \subseteq V \cap U_{i}$, and so $U \cap U_{i}=U$. In this case the definition stated here coincides with the definition stated in § 7.1.
2. By taking $U=V$, we can apply the definition stated here to projective varieties.
3. Let P and Q be homogeneous polynomials in $K[Z]$ of the same degree d. By the same argument we made in $\S 7.1$, there exists a set $W \subseteq U$, open in U, such that $Q(a) \neq 0$ for a in W. Then the expression P / Q induces a well-defined function $P / Q: W \rightarrow K$, because for each a in W we have

$$
(P / Q)(k a)=P(k a) / Q(k a)=\left(k^{d} P(a)\right) /\left(k^{d} Q(a)\right)=P(a) / Q(a)=(P / Q)(a) .
$$

Moreover, on each U_{i}, the function $P /\left.Q\right|_{U_{i}}$ is the regular function p_{i} / q_{i}, where p_{i} and q_{i} are the polynomials in $K[z]$ corresponding to P and Q on $W \cap U_{i}(\S 2.3)$. Therefore, P / Q is regular on W.

[^0]Let U be a distinguished open subset $V-V(Q)$ for some polynomial Q in $K[Z]$.

1. Let R be the set of functions regular on U. As in $\S 7.1, R$ is a ring.
2. Let $[Q]$ be the equivalence class of Q in $K[V]$. Form the set $S=\left\{1,[Q],[Q]^{2}, \ldots\right\}$ of powers of $[Q]$. Let F be the ring of fractions $S^{-1} K[V]$.
3. Let $R^{\prime} \subseteq F$ be the subring of elements represented by P / Q^{\prime}, where P and Q^{\prime} are homogeneous polynomials of the same degree. Then each element of R^{\prime} defines a regular function on U. Further, $R^{\prime}=R$ (proof omitted).
Let $W \subseteq V$ be a quasi-projective variety, and fix a point $a \in W$.
4. The local ring at a is defined analogously to the definition stated in $\S 7.1$ for the affine case: it is the ring of germs of functions $f: U \rightarrow K$, where U is a neighborhood of a that is open in W, and f is regular on U. We denote the local ring at a as $\boldsymbol{O}_{a}(W)$.
5. For any i, let X be the closure in \mathbf{A}^{n} of $U_{i} \cap W$. Then $\boldsymbol{O}_{a}(W)=\boldsymbol{O}_{a}(X)$, where $\boldsymbol{O}_{a}(X)$ is the local ring of X at a defined in $\S 7.1$ (proof omitted).
Again, by taking $U=V$, we can apply the definition to projective varieties.

8. Regular Maps Between Varieties

In this section we define the concept of a regular map or morphism between varieties.

8.1. Regular Maps to Quasi-Affine Varieties

Let $\phi: S \rightarrow K^{n}$ be a map from a set S to the n-dimensional vector space K^{n}. The i th coordinate map $\phi_{i}: S \rightarrow K$ is the composition of ϕ with the projection π_{i} onto the i th coordinate of K^{n}. That is, $\phi_{i}=\pi_{i} \circ \phi$. We may represent ϕ as the tuple of maps $\left(\phi_{1}, \ldots, \phi_{n}\right)$, one for each coordinate of K^{n}.
Let V be a variety.

1. A regular map or morphism ϕ from V to \mathbf{A}^{n}, written $\phi: V \rightarrow \mathbf{A}^{n}$, is a map from V to \mathbf{A}^{n}, each of whose coordinate maps ϕ_{i} is a regular function on $V(\S 7)$. For example, let $V \subseteq \mathbf{A}^{2}$ be the affine variety given by the zero set of $p(z)=z_{1}^{2}-z_{2}^{2}$. Let $\phi_{1}(z)$ be the polynomial z_{1}^{2}, and let $\phi_{2}(z)$ be the polynomial z_{2}^{2}. Then $\phi(z)=\left(\phi_{1}(z), \phi_{2}(z)\right)$ is a regular map $\phi: V \rightarrow \mathbf{A}^{2}$.
2. Let $W \subseteq \mathbf{A}^{n}$ be a quasi-affine variety. A regular map $\phi: V \rightarrow W$ is a regular map $\phi: V \rightarrow \mathbf{A}^{n}$ whose image is contained in W. If W is an affine variety, each such map ϕ corresponds to a ring homomorphism from $K[W]$ to $K[V]$ given by $p \mapsto p \circ \phi$. Further, the map $\phi \mapsto(p \mapsto p \circ \phi)$ is a bijection (proof omitted).
Let V be a variety, let $W \subseteq \mathbf{A}^{n}$ be a quasi-affine variety, and let $\phi: V \rightarrow W$ be a regular map. Then ϕ is continuous, i.e., for every $U \subseteq W$ that is open in $W, \phi^{-1}(W)$ is open in V. To see this, let $p\left(z_{1}, \ldots, z_{n}\right)$ be a polynomial, and let $X_{p}=W-V(p)$ be the distinguished open set of points in W that are not in the zero set of p. Since every open set in W is a union of distinguished open sets, it suffices to prove that $\phi^{-1}\left(X_{p}\right)$ is open.
3. If V is quasi-affine, then V is covered by open sets Y_{j} such that on each Y_{j}, each of the coordinate maps ϕ_{i} is represented by an expression $p_{i j} / q_{i j}$. For each j we may construct a polynomial p_{j} by (a) substituting $p_{i j} / q_{i j}$ for z_{i} in p and (b) multiplying by sufficiently high powers of all the $q_{i j}$ to clear the denominators. For any j, let a be a point in Y_{j}. Since $q_{i j}(a) \neq 0$ for all $i, \phi(a)$ is outside the zero set of p if and only if a is outside the zero set of p_{j}. Therefore for each $j, Y_{j} \cap \phi^{-1}\left(X_{p}\right)$ is open in V. Since the Y_{j} cover $\phi^{-1}\left(X_{p}\right)$, we have that $\phi^{-1}\left(X_{p}\right)$ is open in V.
4. If V is quasi-projective, then we may apply the result from item 1 to $V \cap U_{i}$ for each of the standard open sets U_{i}.
Let V and W be quasi-affine varieties.
5. A regular isomorphism or isomorphism between V and W is a pair of regular maps $\phi: V \rightarrow W$ and $\psi: W \rightarrow V$ such that each map is a bijection, and each is the inverse of the other.
6. We say that V and W are isomorphic if there is an isomorphism between them.

The coordinate ring $K[V]$ of an affine variety is an invariant of isomorphism: two affine varieties V and W are isomorphic if and only if their coordinate rings $K[V]$ and $K[W]$ are isomorphic as K-algebras (proof omitted).

Let $\phi: \mathbf{A}^{n} \rightarrow \mathbf{A}^{n}$ be a regular isomorphism each of whose coordinate maps is a polynomial of degree one. We say that ϕ is an affine coordinate transform or affine change of coordinates.

8.2. Regular Maps to Quasi-Projective Varieties

Let V be a variety.

1. A regular map or morphism ϕ from V to \mathbf{P}^{n}, written $\phi: V \rightarrow \mathbf{P}^{n}$, is a map from V to \mathbf{P}^{n} such that (a) ϕ is continuous; and (b) for each of the standard open sets $U_{i} \subseteq \mathbf{P}^{n}$, the restriction of ϕ to $\phi^{-1}\left(U_{i}\right)$ is a regular map in the sense of § 8.1.
2. Let $W \subseteq \mathbf{P}^{n}$ be a quasi-projective variety. A regular map $\phi: V \rightarrow W$ is a regular map $\phi: V \rightarrow \mathbf{A}^{n}$ whose image is contained in W.
Fix a variety V, and let $\left\{\phi_{i}: V \rightarrow K\right\}_{i \in[0, n]}$ be a family of regular functions on V.
3. Let $\phi: V \rightarrow \mathbf{P}^{n}$ be a regular map. If $\phi(a)=\left[\phi_{0}(a), \ldots, \phi_{n}(a)\right]$ for all a in V, then we say that the regular map ϕ has regular coordinate functions ϕ_{i}.
4. Let $W \subseteq V$ be the set of points a such that $\phi_{i}(a) \neq 0$ for some i. Then W is open in V, and the map $\phi: W \rightarrow \mathbf{P}^{n}$ given by $a \mapsto\left[\phi_{i}(a)\right]$ is a regular map with regular coordinate functions.
Fix variety V, and let $\phi: V \rightarrow \mathbf{P}^{n}$ be a regular map. It is not necessarily the case that ϕ has regular coordinate functions on all of V. For example, let $V \subseteq \mathbf{P}^{2}$ be the zero set of $Z_{0}^{2}+Z_{1}^{2}-Z_{2}^{2}$, and let $\phi: V \rightarrow \mathbf{P}^{1}$ be the map given by

$$
\begin{aligned}
& \phi(Z)=\phi_{0}(Z)=\left[1, \frac{Z_{0}}{Z_{2}+Z_{1}}\right] \text { if } Z_{2}+Z_{1} \neq 0 \\
& \phi(Z)=\phi_{1}(Z)=\left[\frac{Z_{0}}{Z_{2}-Z_{1}}, 1\right] \text { if } Z_{2}-Z_{1} \neq 0 .
\end{aligned}
$$

Note that in this definition, ϕ_{0} and ϕ_{1} are not coordinate functions; they are alternate definitions on overlapping domains. Then

1. ϕ is a well-defined map. Indeed, in the intersection W of the domains of ϕ_{0} and $\phi_{1}, Z_{0} /\left(Z_{2}-Z_{1}\right)$ is welldefined and nonzero. Therefore for Z in W we have

$$
\phi_{0}(Z)=\left[1, \frac{Z_{0}}{Z_{2}+Z_{1}}\right] \cdot \frac{Z_{0}}{Z_{2}-Z_{1}}=\left[\frac{Z_{0}}{Z_{2}-Z_{1}}, \frac{Z_{0}^{2}}{Z_{2}^{2}-Z_{1}^{2}}\right]=\left[\frac{Z_{0}}{Z_{2}-Z_{1}}, 1\right]=\phi_{1}(Z)
$$

Here we have used the fact that a point $\left[a_{0}, a_{1}\right]$ in \mathbf{P}^{1} is invariant under multiplication of each homogeneous coordinate a_{i} by the same nonzero element of K. We have also used the fact that on $V, Z_{0}^{2}=Z_{2}^{2}-Z_{1}^{2}$.
2. ϕ is defined on all of V. Indeed, for any point a on V, if $a_{2}+a_{1}=0$ and $a_{2}-a_{1}=0$, then $a_{1}=0$ and $a_{2}=0$; and then $a_{0}=0$ on V. Therefore $a=[0,0,0]$, which is not a point of \mathbf{P}^{2}.
3. Each ϕ_{i} is the restriction of ϕ to the inverse image $\phi^{-1}\left(U_{i}\right)$, each ϕ_{i} is continuous because it has regular coordinate functions, and each ϕ_{i} is a regular function. Therefore ϕ is a regular map. However, each ϕ_{i} is undefined on $V-\phi^{-1}\left(U_{i}\right)$. For example, ϕ_{0} is undefined at $[0,1,-1]$. Further, there is no family of coordinate functions ϕ_{i} such that the ϕ_{i} are regular on all of V.

Let V and W be quasi-projective varieties.

1. An isomorphism between V and W is a pair of regular maps $\phi: V \rightarrow W$ and $\psi: W \rightarrow V$ such that each map is a bijection, and each is the inverse of the other.
2. We say that V and W are isomorphic if there is an isomorphism between them.
3. If the coordinate rings $K[V]$ and $K[W]$ are isomorphic as graded K-algebras (see §7.2), then we say that V and W are projectively equivalent. In this case, V and W are isomorphic. However, unlike the affine case (§ 8.1), V and W may be isomorphic without being projectively equivalent (proof omitted).
Let $\phi: \mathbf{P}^{n} \rightarrow \mathbf{P}^{n}$ be a projective equivalence with regular coordinate functions each of which is a homogeneous polynomial of degree one. We say that ϕ is a projective coordinate transform or projective change of coordinates.

8.3. Intrinsic and Extrinsic Properties of Varieties

Fix a variety V. Let $S(V)$ be a true statement about V. If, for any variety W that is isomorphic to $V, S(W)$ is also true, then we say that $S(V)$ is an intrinsic property of V. Otherwise we say that $S(V)$ is an extrinsic property of V. An intrinsic property is a property of the equivalence class C of all varieties isomorphic to V. We call C the isomorphism class of V or the abstract variety corresponding to V. An extrinsic property depends on the embedding of V in affine or projective space.

9. Products of Varieties

In this section we define products of varieties.

9.1. In Affine Space

For any m and n, we may form the Cartesian or set-theoretic product $\mathbf{A}^{m} \times \mathbf{A}^{n}$. As a set, this product is equal to $K^{m} \times K^{n}$, which naturally has the structure of $K^{m} \oplus K^{n}=K^{m+n}=\mathbf{A}^{m+n}$. Therefore we define

$$
\mathbf{A}^{m} \times \mathbf{A}^{n}=\mathbf{A}^{m+n}
$$

This definition lets us take products of arbitrary affine and quasi-affine varieties. For example, if $V \subseteq \mathbf{A}^{m}$ and $W \subseteq \mathbf{A}^{n}$ are affine varieties, then $V \times W$ is the set of all points a in \mathbf{A}^{m+n} such that the first m coordinates define a point of V in \mathbf{A}^{m} and the last n coordinates define a point of W in \mathbf{A}^{n}. Equivalently, if we write the coordinates of \mathbf{A}^{m} as $x=\left(x_{1}, \ldots, x_{m}\right)$ and we write the coordinates of \mathbf{A}^{n} as $y=\left(y_{1}, \ldots, y_{n}\right)$, and if V is generated by the polynomials $F \subseteq K[x]$ and W is generated by the polynomials $G \subseteq K[y]$, then $V \times W$ is the affine variety in $\mathbf{A}^{m} \times \mathbf{A}^{n}$ generated by $F \cup G \subseteq K[x, y]$. We handle quasi-affine varieties similarly.

9.2. In Projective Space

The set $S=\mathbf{P}^{m} \times \mathbf{P}^{n}$ does not naturally have the structure of a projective variety. Indeed, write a general point of \mathbf{P}^{m} as $X=\left[X_{0}, \ldots, X_{m}\right]$, and write a general point of \mathbf{P}^{n} as $Y=\left[Y_{0}, \ldots, Y_{n}\right]$. Then a point in S is a tuple of coordinates $[X],[Y]$ such that $[X],[Y] \sim\left[k_{1} X\right],\left[k_{2} Y\right]$ for any $k_{1}, k_{2} \neq 0$ in K; whereas a point in projective space would be a tuple of coordinates $[X, Y]$ such that $[X, Y] \sim[k X, k Y]$ for any $k \neq 0$.
To give S the structure of a projective variety, we let $N=m n+m+n$, and we embed S in \mathbf{P}^{N} as follows:

1. Let the homogeneous coordinates of \mathbf{P}^{N} be Z_{0}, \ldots, Z_{N}. Note that there are

$$
N+1=m n+m+n+1=(m+1)(n+1)
$$

coordinates. So there is one coordinate for each pair (X_{i}, Y_{j}) of coordinates in X and Y.
2. Let $\sigma:[0, m] \times[0, n] \rightarrow[0, N]$ be given by $\sigma(i, j)=(n+1) i+j$. σ maps each pair of coordinate indices (i, j) in $\mathbf{P}^{m} \times \mathbf{P}^{n}$ uniquely to a coordinate index in \mathbf{P}^{N}.
3. Let $\phi: S \rightarrow \mathbf{P}^{N}$ be the regular map with regular coordinate functions (§8.2) whose coordinate function $\phi_{\sigma(i, j)}$, for each $i \in[0, m]$ and $j \in[0, n]$, is given by

$$
\begin{equation*}
\phi_{\sigma(i, j)}([X],[Y])=X_{i} Y_{j} . \tag{2}
\end{equation*}
$$

That is, the homogeneous coordinate at index $\sigma(i, j)=(n+1) i+j$ in the image of $\phi([X],[Y])$ is $X_{i} Y_{j}$.
Note the following:

1. Fix an element a of \mathbf{P}^{m} and an element b of \mathbf{P}^{n}.
a. For some i and j, we have $a_{i} \neq 0$ and $b_{j} \neq 0$. Therefore $\phi_{\sigma(i, j)}([a],[b])=a_{i} b_{j} \neq 0$.
b. For $k_{1}, k_{2} \neq 0$, we have $\phi\left(\left[k_{1} a\right],\left[k_{2} b\right]\right)=k_{1} k_{2} \phi([a],[b])$.

Therefore ϕ is a well-defined map to \mathbf{P}^{N}.
2. ϕ is an injection. To see this, fix a point c in $\phi(S)$, and let a in \mathbf{P}^{m} and b in \mathbf{P}^{n} be points such that $\phi(a, b)=c$.
a. For some i_{0} there is a unique representative $\left[a_{i}\right]$ of a such that $a_{i_{0}}=1$, and for some j_{0} there is a unique representative $\left[b_{j}\right]$ of b such that $b_{j_{0}}=1$. The coordinates $\left\{c_{k}\right\}$ with $c_{\sigma(i, j)}=a_{i} b_{j}$ provide the unique representative of c with $c_{\sigma\left(i_{0}, j_{0}\right)}=1$.
b. Now consider another pair of points a^{\prime} and b^{\prime} in $\mathbf{P}^{m} \times \mathbf{P}^{n}$, with $a^{\prime} \neq a$ or $b^{\prime} \neq b$. We will show that $\phi\left(a^{\prime}, b^{\prime}\right) \neq c$.
i. If a^{\prime} has coordinate zero at i_{0} or b^{\prime} has coordinate zero at j_{0}, then coordinate $\sigma\left(i_{0}, j_{0}\right)$ of $\phi\left(a^{\prime}, b^{\prime}\right)$ is zero, so $\phi\left(a^{\prime}, b^{\prime}\right) \neq c$.
ii. Otherwise, let $\left[a_{i}^{\prime}\right]$ be the unique representative of a^{\prime} with $a_{i_{0}}^{\prime}=1$, and let $\left[b_{j}^{\prime}\right]$ be the unique representative of b^{\prime} with $b_{j_{0}}^{\prime}=1$. If $a^{\prime} \neq a$, then $a_{i_{1}}^{\prime} \neq a_{i_{1}}$ for some $i_{1} \neq i_{0}$. In this case

$$
\phi_{\sigma\left(i_{1}, j_{0}\right)}\left(\left[a_{i}^{\prime}\right],\left[b_{j}^{\prime}\right]\right)=a_{i_{1}}^{\prime} \neq a_{i_{1}}=\phi_{\sigma\left(i_{1}, j_{0}\right)}\left(\left[a_{i}\right],\left[b_{j}\right]\right) .
$$

Therefore $\phi\left(a^{\prime}, b^{\prime}\right) \neq c$. A similar argument shows that if $b^{\prime} \neq b$, then $\phi\left(a^{\prime}, b^{\prime}\right) \neq c$.
3. $\phi(S) \subseteq \mathbf{P}^{N}$ is the zero set of the homogeneous polynomials

$$
\begin{equation*}
P_{\sigma\left(i_{1}, j_{1}\right) \sigma\left(i_{2}, j_{2}\right)}(Z)=Z_{\sigma\left(i_{1}, j_{1}\right)} Z_{\sigma\left(i_{2}, j_{2}\right)}-Z_{\sigma\left(i_{1}, j_{2}\right)} Z_{\sigma\left(i_{2}, j_{1}\right)} \tag{3}
\end{equation*}
$$

in $K[Z]$, for all pairs of pairs of indices $\left(\left(i_{1}, j_{1}\right),\left(i_{2}, j_{2}\right)\right)$ with $i_{2}>i_{1}$ and $j_{2}>j_{1}$.
a. $\phi(S)$ is contained in this zero set: for example, $\left(a_{1} b_{2}\right)\left(a_{3} b_{4}\right)-\left(a_{1} b_{4}\right)\left(a_{3} b_{2}\right)=0$.
b. On the other hand, given any element c in the zero set, we can choose a representative [c_{k}] with $c_{\sigma\left(i_{0}, j_{0}\right)}=1$ for some i_{0} and j_{0}. Let a be the point in \mathbf{P}^{m} represented by $\left[a_{i}\right]$, where $a_{i}=c_{\sigma\left(i, j_{0}\right)}$, and let b be the point in \mathbf{P}^{n} represented by $\left[b_{j}\right]$, where $b_{j}=c_{\sigma\left(i_{0}, j\right)}$. Then

$$
\phi_{\sigma(i, j)}\left(\left[a_{i}\right]\left[b_{i}\right]\right)=c_{\sigma\left(i, j_{0}\right)} c_{\sigma\left(i_{0}, j\right)}=c_{\sigma(i, j)} c_{\sigma\left(i_{0}, j_{0}\right)}=c_{\sigma(i, j)}
$$

So $\phi(a, b)=c$, and so $\phi(S)$ contains the zero set.
Therefore $\phi(S) \subseteq \mathbf{P}^{N}$ is a projective variety.
The map ϕ is called the Segre map or the Segre embedding.
We may express the Segre map in the language of tensor products.

1. Recall that $K^{m+1} \otimes K^{n+1}=K^{(m+1)(n+1)}$, and that a basis for $K^{m+1} \otimes K^{n+1}$ is the set of elements $\left\{c_{i} \otimes d_{j}\right\}$, where $\left\{c_{i}\right\}$ are basis vectors for K^{m+1} and $\left\{d_{j}\right\}$ are basis vectors for K^{n+1}. See Definitions for Commutative Algebra, § 8.
2. We may represent an element $a \in K^{m+1}$ as $\sum_{i} a_{i} c_{i}$, where a_{i} are the coordinates of a, and c_{i} are the standard unit basis vectors. Similarly, we may represent an element $b \in K^{n+1}$ as $\sum_{j} b_{j} d_{j}$.
3. The element $a \otimes b \in K^{m+1} \otimes K^{n+1}$ is then

$$
\left(\sum_{i} a_{i} c_{i}\right) \otimes\left(\sum_{j} b_{j} d_{j}\right)=\sum_{i, j} a_{i} c_{i} \otimes b_{j} d_{j}=\sum_{i, j}\left(a_{i} b_{j}\right)\left(c_{i} \otimes d_{j}\right) .
$$

Identifying the coefficient $a_{i} b_{j}$ of $\left(c_{i} \otimes d_{j}\right)$ with the coordinate $\sigma(i, j)$ of $K^{(m+1)(n+1)}$, we see that this is the image $\phi([a],[b])$ of the Segre map.
4. If we write $\mathbf{P}\left(\mathbf{A}^{m+1}\right)$ to mean the projective space \mathbf{P}^{m} with homogeneous coordinates in \mathbf{A}^{m+1}, then the Segre map takes the element $([a],[b])$ in $\mathbf{P}\left(\mathbf{A}^{m+1}\right) \times \mathbf{P}\left(\mathbf{A}^{n+1}\right)$ to the element $[a \otimes b]$ in $\mathbf{P}\left(\mathbf{A}^{(m+1)(n+1)}\right)$.
5. Compare the product of affine spaces (§ 9.1), which takes (a, b) in $\mathbf{A}^{m} \times \mathbf{A}^{n}$ to $a \oplus b$ in \mathbf{A}^{m+n}.

We may express projective subvarieties of $\phi(S)=\phi\left(\mathbf{P}^{m} \times \mathbf{P}^{n}\right)$ in terms of polynomials in the ring $K[X, Y]$.

1. Let $P(X, Y)$ be a polynomial in $K[X, Y]$. Let $P_{Y}(X)$ be the corresponding polynomial in $K[Y][X]$, i.e., with variables in X and coefficients in $K[Y]$, and let $P_{X}(Y)$ be the corresponding polynomial in $K[X][Y]$. We say that P is bihomogeneous if P_{X} is homogeneous with degree d_{X} and P_{Y} is homogeneous with degree d_{Y}. In this case we say that P has bidegree $\left(d_{X}, d_{Y}\right)$. For example, let $P(X, Y)=X_{1} X_{2} Y_{1}^{3}+X_{1}^{2} Y_{1} Y_{2}^{2}$. Then $P_{Y}(X)=\left(Y_{1}^{3}\right) X_{1} X_{2}+\left(Y_{1} Y_{2}^{2}\right) X_{1}^{2}, P_{X}(Y)=\left(X_{1} X_{2}\right) Y_{1}^{3}+\left(X_{1}^{2}\right) Y_{1} Y_{2}^{2}$, and P is bihomogeneous with bidegree $(2,3)$.
2. We say that a bihomogeneous polynomial has equal bidegree if its bidegree is (d, d) for some d. For example, $X_{1} Y_{1}+X_{2} Y_{2}$ has equal bidegree with $d=1$.
3. Let V be a projective subvariety of $\phi(S)$. Then V is the intersection of $\phi(S)$ with a subvariety of \mathbf{P}^{N}, i.e., it is in the image (2) and is also in the zero set of a family of homogeneous polynomials $\left\{P_{\alpha}(Z)\right\}$ in $K[Z]$.

Replacing each $Z_{\sigma(i, j)}$ with $X_{i} X_{j}$ in each $P_{\alpha}(Z)$ according to (2) yields a family of polynomials $\left\{Q_{\alpha}(X, Y)\right\}$ in $K[X, Y]$, each of which is bihomogeneous with equal bidegree.
4. On the other hand, given a bihomogeneous polynomial $Q[X, Y]$ of equal bidegree, we can group pairs of factors X_{i} and Y_{j} and replace each pair by $Z_{\sigma(i, j)}$; according to the relations (3), it doesn't matter how we do this grouping. The resulting homogeneous polynomial $P(Z)$ is in the image (2).
Items 3 and 4 establish that the subvarieties V of $\phi(S)$ are precisely the images $\phi(W)$ of subsets $W \subseteq \mathbf{P}^{m} \times \mathbf{P}^{n}$ cut out by families of homogeneous polynomials in $K[X, Y]$ of equal bidegree.
If $V \subseteq \mathbf{P}^{m}$ and $W \subseteq \mathbf{P}^{n}$ are projective varieties, then the Segre image $\phi(V \times W) \subseteq \mathbf{P}^{N}$ is a projective variety.

1. Suppose that V is generated by homogeneous polynomials $\left\{P_{\alpha}(X)\right\}$, and let V_{α} denote the zero set of P_{α}. There is no point in \mathbf{P}^{n} where all the Y_{i} are zero. Therefore, for each $\alpha, V_{\alpha} \times \mathbf{P}^{n}$ is the zero set of $F_{\alpha}=\left\{P_{\alpha}(X) Y_{i}^{d_{\alpha}}\right\}_{i \in[1, n]}$, where d_{α} is the degree of P_{α}.
2. Let $F_{V}=\cup_{\alpha} F_{\alpha}$. Then $V \times \mathbf{P}^{n}$ is the zero set of F_{V}.
3. Similarly, suppose that W is generated by homogeneous polynomials $\left\{P_{\beta}(Y)\right\}$, and let W_{β} denote the zero set of P_{β}. Then for each $\beta, \mathbf{P}^{m} \times W_{\beta}$ is the zero set of $F_{\beta}=\left\{P_{\beta}(Y) X_{i}^{d_{\beta}}\right\}_{i \in[1, m]}$, where d_{β} is the degree of P_{β}.
4. Let $F_{W}=\cup_{\beta} F_{\beta}$. Then $\mathbf{P}^{m} \times W$ is the zero set of F_{W}.
5. $V \times W$ is the zero set of $F=F_{V} \cup F_{W}$. All the polynomials in F are bihomogeneous of equal bidegree, and they cut out $V \times W$; so by the previous paragraph, $\phi(V \times W)$ is a subvariety of $\phi(S)$.
A similar result holds for quasi-projective varieties (proof omitted).
We define the product of any two quasi-projective varieties $V \subseteq \mathbf{P}^{m}$ and $W \subseteq \mathbf{P}^{n}$ to be the Segre image $\phi(V \times W) \subseteq \mathbf{P}^{N}$. This definition gives us a stronger notion of product than the set-theoretic product, because in this sense the product of two varieties is again a variety.

10. Parameterized Families and General Objects

Let O be a set of objects (not necessarily varieties), and let $p: O \rightarrow\{$ true, false $\}$ be a predicate function that expresses whether a particular property holds for a member o of O. Let V be an irreducible variety, and let $F=\left\{o_{a}\right\}_{a \in V}$ be a family of objects in O.

1. We say that the family F is parameterized by the variety V.
2. We say that the general object of F has property p if $p\left(o_{v}\right)=$ true for all v on an open dense subset of V. For example, consider the set of all lines in \mathbf{P}^{2}. Each line is given by the zero set of a homogeneous polynomial

$$
L(Z)=a_{0} Z_{0}+a_{1} Z_{1}+a_{2} Z_{2},
$$

with not all the a_{i} equal to zero. We may identify each such line with a point $a=\left[a_{0}, a_{1}, a_{2}\right]$ in \mathbf{P}_{2}. Thus we may express the set of lines in \mathbf{P}_{2} as a family $\left\{L_{a}\right\}_{a \in \mathbf{P}^{2}}$. Fix a point b in \mathbf{P}^{2}, say $b=[0,0,1]$. The lines L_{a} that do not intersect b are given by points a with $a_{2} \neq 0$; the set of all such points is open in the irreducible variety \mathbf{P}^{2} and hence is dense in \mathbf{P}^{2} (§ 5.2). Therefore we may say that the general line in \mathbf{P}^{2} does not intersect the point b.

11. Rational Functions and Maps

In this section we define the concepts of rational functions on varieties and rational maps between varieties. These concepts generalize the concepts of regular functions (§7) and regular maps (§8) on irreducible varieties.

11.1. Rational Functions

Fix an irreducible affine variety $V \subseteq \mathbf{A}^{n}$.

1. The coordinate ring $K[V]$ of V is an integral domain, so we may form its field of fractions. See Definitions for Commutative Algebra, § 14. We denote the field of fractions $K(V)$ and call it the rational function field of V. The elements of $K(V)$ are called rational functions on V.
2. For any point a in V, the local ring $\boldsymbol{O}_{a}(V)$ is a subring of $K(V): K(V)$ contains all elements p / q with p and q in $K[V]$; whereas $\boldsymbol{O}_{a}(V)$ contains all elements p / q in $K(V)$ such that $q(a) \neq 0$.
3. Fix a set $U \subseteq V$ that is open in V.
a. Let $f: U \rightarrow K$ be a regular function (§ 7.1). Then for every point a in U, there is a set $W_{a} \subseteq U$ that contains a and is open in U such that, on W_{a}, f is represented by a rational function p / q in $K(V)$. This statement follows from the definitions of a regular function and of a rational function.
b. Fix a rational function p / q. Then p / q is not necessarily regular on U, because at some point a in U we may have $q(a)=0 . p / q$ is regular on a subset of U that is open in U (the complement in U of the zero locus of q).
Fix a quasi-affine variety W. We define the rational function field $K(W)$ to be $K(V)$, where V is the closure of W.
Note the mismatch of terminology: a regular function on U is a well-defined function $f: U \rightarrow K$ that is represented at each point in U by a ratio of polynomials. A rational function on V is a ratio of polynomials that may or may not be a well-defined function at any point of V. This mismatch is unfortunate, but standard.
Fix an irreducible projective variety $V \subseteq \mathbf{P}^{n}$.
4. We define the rational function field of V, again noted $K(V)$, to be the rational function field $K(U)$ of the affine variety $U=V \cap U_{i}$ for any of the standard open sets U_{i}; the field so obtained is independent of i (proof omitted).
5. $K(V)$ is equal to the field of elements $P(Z) / Q(Z)$, where P and Q are homogeneous polynomials in $K[V]$ of the same degree (proof omitted).
Fix a quasi-projective variety W. We define the rational function field $K(W)$ to be $K(V)$, where V is the closure of W.

11.2. Rational Maps

In this section, V is an irreducible variety, and W is a variety.
Let S be the set of pairs (U, ψ), where $U \subseteq V$ is nonempty and is open in V, and $\psi: U \rightarrow W$ is a regular map (§8). Let \sim be the following binary relation on S :

$$
\left(U_{1}, \psi_{1}\right) \sim\left(U_{2}, \psi_{2}\right) \text { if } \psi_{1} \text { and } \psi_{2} \text { agree on } U_{1} \cap U_{2}
$$

It is easy to see that \sim is an equivalence relation on S. Let M be the set of equivalence classes of S modulo \sim. We call the elements ϕ of M rational maps. We write $\phi: V \cdots W$ to denote a rational map from V to W. Let $\phi=\left\{\left(U_{i}, \psi_{i}\right)\right\}$ be an element of M, and note the following:

1. Any regular map $\psi: V \rightarrow W$ induces a rational map $\phi: V \cdots W$ given by $\phi=\left\{U_{i},\left.\psi\right|_{U_{i}}\right\}$, where the sets U_{i} are the nonempty subsets of V that are open in V.
2. Let $W=\cap U_{i}$. The closure of W is the intersection of the closures of the U_{i}. Since the U_{i} are nonempty and V is irreducible, each U_{i} is dense in V (§5.1), i.e., the closure of each U_{i} is V. Therefore the closure of W is V, i.e., W is a nonempty and dense open subset of V set on which all of the ψ_{i} agree.
3. Let $U=\cup U_{i}$. Then U is open in V. For each point a in U, define $\psi(a)=\psi_{i}(a)$, for any i such that X_{i} contains a. Since the regular maps ψ_{i} agree on their points of common definition, ψ is well-defined on all of U and is a regular map from U to W. The pair (U, ψ) is therefore an element $\left(U_{j}, \psi_{j}\right)$ of ϕ. Moreover, for every $i, U_{i} \subseteq U$; and U is the unique set U_{j} with this property. U is called the domain of regularity of the rational map $\phi . V-U$ is called the indeterminacy locus of ϕ.
4. A rational map ϕ is not a map in the ordinary sense. Instead, it is an equivalence class of maps. In this respect a rational map is similar to a function germ (§ 7.1). This is another bit of idiosyncratic terminology.
The following facts motivate the term "rational map."
5. Assume that $V \subseteq \mathbf{A}^{m}$ and $W \subseteq \mathbf{A}^{n}$ are quasi-affine varieties. Let $\left\{\phi_{i}\right\}_{i \in[1, n]}$ be a family of rational functions f_{i} in $K(V)$. We may represent each f_{i} as a ratio p_{i} / q_{i} of polynomials in $K[z]$ having no common factors of degree greater than zero. Assume that at each point a of W, either (a) $q_{i}(a)=0$ for some i or (b) the point $\left\{p_{i}(a) / q_{i}(a)\right\}$ lies in W. Then the set of points for which (a) is true is the intersection with V of the union of the zero sets of the polynomials q_{i} in $K[z]$. Therefore the set of points for which (b) is true is a set $U \subseteq V$ that is open in V. Let $\phi(a)=\left\{\phi_{i}(a)\right\}$. On U, each ϕ_{i} is a regular function, so ϕ is a regular map. Therefore ϕ defines a rational map from V to W.
6. Assume that $V \subseteq \mathbf{P}^{m}$ and $W \subseteq \mathbf{P}^{n}$ are quasi-projective varieties. Let $\left\{\phi_{i}\right\}_{i \in[0, n]}$ be a family of rational functions F_{i} in $K(V)$. We may represent each F_{i} as a ratio P_{i} / Q_{i} of homogeneous polynomials in $K[Z]$ of equal degree, having no common factors of degree greater than zero. Assume that at each point a of W, either (a) $Q_{i}(a)=0$ for some i or (b) $P_{i}(a)=0$ for all i or (c) the point $\left[P_{i}(a) / Q_{i}(a)\right]$ lies in W. Let $\phi(a)=\left[P_{i}(a) / Q_{i}(a)\right]$ on the set of points a where (c) is true. Then by a similar argument to the one made in item $1, \phi$ defines a regular map on an open set U, and hence a rational map from V to W.
7. We may reason similarly in the cases where V is quasi-affine and W is quasi-projective, or vice versa. In each case, a family of rational functions defines a rational map.

A rational map $\phi: V-\rightarrow W$ is dominant if, for some pair (U, ψ) in $\phi, \psi(U)$ is dense in W. This is true if and only if it is true for every pair (U, ψ) in ϕ (proof omitted).

11.3. Rational Functions as Rational Maps

Let V be an irreducible variety, and let f be a rational function in $K(V)$.

1. If the closure of V is an affine variety, then $f=p / q$, where p and q are polynomials in $K[z]$ having no common factors. p / q defines a regular function ψ on the open set $U=V-V(q)$.
2. If the closure of V is a projective variety, then $f=P / Q$, where P and Q are homogeneous polynomials in $K[Z]$ with equal degree, having no common factors. P / Q defines a regular function ψ on the open set $U=V-V(Q)$.
In either case, (U, ψ) defines a rational map $\phi: V \cdots \mathbf{A}^{1}$.
Let F be the set of rational maps $\phi: V \cdots \rightarrow \mathbf{A}^{1} . F$ is a field with operations

$$
\begin{gathered}
\left(U_{1}, \psi_{1}\right)+\left(U_{2}, \psi_{2}\right)=\left(U_{1} \cap U_{2}, \psi_{1}+\psi_{2}\right) \\
-(U, \psi)=(U,-\psi) \\
\left(U_{1}, \psi_{1}\right) \cdot\left(U_{2}, \psi_{2}\right)=\left(U_{1} \cap U_{2}, \psi_{1} \cdot \psi_{2}\right) \\
1 /(U, \psi)=\left(\psi^{-1}\left(\mathbf{A}^{1}-\{0\}\right), 1 / \psi\right)
\end{gathered}
$$

F is isomorphic to the rational function field $K(V)$ (proof omitted).

11.4. Graphs and Images of Rational Maps

Let $V \subseteq \mathbf{P}^{m}$ be a quasi-projective variety, and let $\psi: V \rightarrow \mathbf{P}^{n}$ be a regular map. The graph of ψ, denoted Γ_{ψ}, is the subset of $V \times \mathbf{P}^{n}$ consisting of all pairs (a, b) such that $b=\psi(a)$. Let $S: \mathbf{P}^{m} \times \mathbf{P}^{n} \rightarrow \mathbf{P}^{N}$ be the Segre map (§ 9.2). If V is a projective variety in \mathbf{P}^{m}, then $S\left(\Gamma_{\psi}\right)$ is a projective variety in \mathbf{P}^{N} (proof omitted).
Let $V \subseteq \mathbf{P}^{m}$ be an irreducible variety, and let $\phi: V-\rightarrow \mathbf{P}^{n}$ be a rational map.

1. The graph of ϕ, denoted Γ_{ϕ}, is the closure of the graph Γ_{ψ} of the regular map $\psi: U \rightarrow \mathbf{P}^{n}$, where (U, ψ) is any representative of the class ϕ. This definition is independent of the representative chosen (proof omitted).
2. Let $\pi_{1}: \Gamma_{\phi} \rightarrow V$ be the projection $S(a, b) \mapsto a$. This notation means that $\pi_{1}(c)=a$, where a and b are the unique values such that $S(a, b)=c$. Let $\pi_{2}: \Gamma_{\phi} \rightarrow \mathbf{P}^{n}$ be the projection $S(a, b) \mapsto b$.
a. The image of ϕ is the set $\pi_{2}\left(\Gamma_{\phi}\right)$. If V is a projective variety, then the image of ϕ is also a projective variety (proof omitted).
b. Let $X \subseteq V$ be a variety. The image of X under ϕ, written $\phi(X)$, is $\pi_{2}\left(\pi_{1}^{-1}(X)\right)$. Note that when $X=V$, we get the definition in part (a).
c. Let $Y \subseteq \mathbf{P}^{n}$ be a variety. The inverse image of Y under ϕ, written $\phi^{-1}(Y)$, is $\pi_{1}\left(\pi_{2}^{-1}(Y)\right.$).

Note that these "images" and "inverse images" of rational "maps" do not behave like images and inverse images of ordinary maps. For example, it is not true in general that for any point b in the image of ϕ, there exists a point a in V such that $\phi(a)=b$. So we have more idiosyncratic terminology.
Let V be an irreducible variety, let W be a quasi-projective variety, and let $\phi: V-\rightarrow W$ be a rational map. From the definitions, we have the following:

1. The image of ϕ is contained in the closure of W.
2. ϕ is dominant (§11.2) if and only if the image of ϕ is the closure of W.

11.5. Composition of Rational Maps

In this section, $\phi_{1}: V-\rightarrow W$ and $\phi_{2}: W-\rightarrow X$ are rational maps.
Suppose there exist pairs $\left(U_{1}, \psi_{1}\right)$ representing ϕ_{1} and $\left(U_{2}, \psi_{2}\right)$ representing ϕ_{2} such that $\psi_{1}\left(U_{1}\right) \cap U_{2}$ is nonempty. Then $U=\psi_{1}^{-1}\left(U_{2}\right) \subseteq U_{1}$ is nonempty; and because ψ_{1} is continuous (§8), U is open in V. Let ψ be the composition of the restriction of ψ_{1} to U with ψ_{2}, i.e., $\psi=\left.\psi_{2} \circ \psi_{1}\right|_{U}$. Then ψ defines a regular map from U to X, so (U, ψ) represents a rational map $\phi: V \rightarrow X$. We call ϕ the composition of ϕ_{1} and ϕ_{2} and write $\phi=\phi_{2} \circ \phi_{1}$.

1. If, for every pair $\left(U_{1}, \psi_{1}\right)$ and $\left(U_{2}, \psi_{2}\right), \psi_{1}\left(U_{1}\right) \cap U_{2}$ is empty, then $U=\phi_{1}^{-1}\left(U_{2}\right)$ is empty, and the composition $\phi_{2} \circ \phi_{1}$ is not defined.
2. If ϕ_{1} is dominant (§11.2), then $U \neq \varnothing$, and $\phi_{2} \circ \phi_{1}$ is defined.

Assume that ϕ_{1} is dominant, and let f be an element of $K(W)$. Then $f \circ \phi_{1}$ is defined and is a rational map from V to \mathbf{A}^{1}, so it is an element of $K(V)(\S 11.3)$. Let $\phi_{1}^{*}: K(W) \rightarrow K(V)$ be the map that takes f to $\phi_{1}^{*} f=f \circ \phi_{1}$. Then ϕ_{1}^{*} is an inclusion of function fields (proof omitted).

11.6. Birational Isomorphism

Let V and W irreducible varieties. Suppose there exist rational maps $\phi_{1}: V-\rightarrow W$ and $\phi_{2}: W-\rightarrow V$ such that the compositions $\phi_{2} \circ \phi_{1}$ and $\phi_{1} \circ \phi_{2}$ are both defined and equal to the identity map on their domains of regularity. In this case we say that each of the maps ϕ_{1} and ϕ_{2} is birational, and we say that the varieties V and W are birationally isomorphic or birational. Note that when ϕ_{1} and ϕ_{2} are birational, each ϕ_{i} is a dominant rational map.
Fix irreducible varieties V and W.

1. As noted in § 11.2, a regular map $\psi: V \rightarrow W$ induces a rational map $\phi: V-\rightarrow W$. If ψ is a regular isomorphism (§8), then ϕ is a birational isomorphism.
2. Let $\phi: V-\rightarrow W$ be a rational map, and assume that the field K has characteristic zero (see Definitions for Commutative Algebra, § 6). Then ϕ is birational if and only if for the general point a of W (§ 10), the inverse image $\phi^{-1}(a)(\S 11.4)$ consists of a single point (proof omitted).
3. V and W are birational if (a) $K(V)$ is isomorphic to $K(W)$ or (b) there exist nonempty open subsets $X \subseteq V$ and $Y \subseteq W$ such that X and Y are isomorphic (§8). Conditions (a) and (b) are equivalent (proof omitted).
Let V be a variety. We say that V is rational if any of the following conditions holds:
4. V and \mathbf{P}^{n} are birational. Note this condition implies that V is irreducible.
5. $K(V)$ is isomorphic to the field of fractions of $K[z]$.
6. V contains an open subset U that is isomorphic to an open subset of \mathbf{A}^{n}.

These conditions are equivalent (proof omitted). If these conditions do not hold, then we say that V is irrational.

11.7. Rational Maps of Finite Degree

Let V be an irreducible variety, and let W be a variety. Let $\phi: V \cdots W$ be a dominant rational map, and let $\phi^{*}: K(W) \rightarrow K(V)$ be the corresponding inclusion of function fields (§ 11.5).

1. $\phi^{-1}(a)$ is finite for the general point of W if and only if $K(V)$ is a finite extension of $\phi^{*} K(W)$ (see Definitions for Commutative Algebra, § 19) (proof omitted).
2. If the condition in item 1 is satisfied, then
a. We say that ϕ is generically finite or of finite degree.
b. The number of points in $\phi^{-1}(a)$ for general a is called the degree of the map.
c. If K has characteristic zero, then the degree of the map is equal to the degree of the field extension (proof omitted).

12. Blowing Up Varieties Along Subvarieties

In this section we define a construction called the blowup of a variety along a subvariety.

12.1. In Affine Space

Fix an irreducible affine variety $V \subseteq \mathbf{A}^{m}$ and a variety $W \subseteq V$. Let $\left\{p_{i}(z)\right\}_{i \in[1, n]}$ be a family of polynomials in $K[z]$ that generate $I(V)$. Let $\phi: V \cdots \mathbf{P}^{n}$ be the rational map represented by (X, ψ), where $X=V-W$, and

$$
\psi(z)=\left[p_{i}(z)\right] .
$$

Then we have the following:

1. For every point a in X, at least one of the values $p_{i}(a)$ is not zero. Therefore $\psi: X \rightarrow \mathbf{P}^{n}$ is a regular map with regular coordinate functions (§8.2).
2. For every point in W, all the values $p_{i}(a)$ are zero. Therefore the domain of regularity of ϕ is X, and the indeterminacy locus is W.
Let $Y \subseteq \mathbf{P}^{m} \times \mathbf{P}^{n}$ be the set of points ($\left.[1, a], b\right)$ such that $a \in X$ and $b=\psi(a)$, and let $S: \mathbf{P}^{m} \times \mathbf{P}^{n} \rightarrow \mathbf{P}^{N}$ be the Segre map (§ 9.2). Observe the following:
3. The map from X to Y given by $a \mapsto([1, a], \psi(a))$ is a bijection. Indeed, for any two points $b=([1, a], \psi(a))$ and $b^{\prime}=\left(\left[1, a^{\prime}\right], \psi\left(a^{\prime}\right)\right)$ in Y, if $a=a^{\prime}$, then $\psi(a)=\psi\left(a^{\prime}\right)$, and $b^{\prime}=b$. Therefore if $b^{\prime} \neq b$, then $a^{\prime} \neq a$.
4. The map in item 1 induces a map $\eta: X \rightarrow S(Y)$ given by $\eta(a)=S([1, a], \psi(a))$. η is a regular isomorphism (proof omitted).
5. $S(Y)$ is a subset of the graph $\Gamma_{\phi}(\S 11.4)$. Let $\pi: \Gamma_{\phi} \rightarrow V$ be the projection map $S([1, a], b) \mapsto a$. Then π restricted to $S(Y)$ is the isomorphism $\eta^{-1}: Y \rightarrow X$.

The pair $\left(\Gamma_{\phi}, \pi\right)$ is called the blowup of V along W. Let E be the set $\pi^{-1}(W)$ of elements $S(a, b)$ in Γ_{ϕ} such that $a \in W . E$ is called the exceptional divisor associated with the blowup.
For example, let $V=\mathbf{A}^{2}$, and let W be the variety $\{(0,0)\}$ generated by $\left\{z_{1}=0, z_{2}=0\right\}$. Let $\phi: \mathbf{A}^{2}-\rightarrow \mathbf{P}^{1}$ be the rational map represented by (X, ψ), where $X=\mathbf{A}^{2}-W$, and

$$
\psi\left(z_{1}, z_{2}\right)=\left[z_{1}, z_{2}\right] .
$$

Then we have the following:

1. X is the set of points $a=\left(a_{1}, a_{2}\right)$ such that $a \neq(0,0)$.
2. $S(Y) \subseteq S\left(\mathbf{P}^{2} \times \mathbf{P}^{1}\right)$ is the set of points $S([1, a],[a])=S\left(\left[1, a_{1}, a_{2}\right],\left[a_{1}, a_{2}\right]\right)$ such that $a \neq(0,0)$.
3. X is isomorphic to $S(Y)$ via the isomorphism $\eta(a)=S([1, a],[a])$.
4. The graph Γ_{ϕ} is the closure in \mathbf{P}^{N} of $S(Y)$. Because the open set $U_{0}=\{[1, a]\}_{a \in \mathbf{A}^{2}}$ is dense in $\mathbf{P}^{2}, \Gamma_{\phi}$ is the set $S(Y) \cup E$, where E is the set of points $S([0, a],[a])$ for $a \neq(0,0)$.
5. E is the exceptional divisor $\pi^{-1}(W)$. It is isomorphic to \mathbf{P}^{1}.

Notice how the blowup extends the regular map ψ in a natural way. When $a \neq 0$, the projection of $\pi^{-1}(a)$ onto \mathbf{P}^{1} agrees with $\psi(a)$ and yields the point $[a]$ of \mathbf{P}^{1} corresponding to a. When $a=0, \psi$ is undefined, and the projection of $\pi^{-1}(a)$ onto \mathbf{P}^{1} yields all of \mathbf{P}^{1}.

12.2. In Projective Space

Let I be an ideal of $K[Z]$. We define the saturation of I, denoted I, to be the set of all polynomials p in $K[Z]$ such that, for some $k \geq 0$ and all homogeneous polynomials P of degree $d \geq k, P p$ lies in I.
Fix ideals I and J of $K[Z]$. The following conditions on I and J are equivalent (proof omitted):

1. $\bar{I}=\bar{J}$.
2. Denote by I_{m} the set of elements of I, each of whose terms has degree at least m. Then for some $M \geq 0$ and all $m \geq M, I_{m}=J_{m}$.
3. For each i in $[0, n]$, let I_{i} be the result of converting each polynomial $P\left(Z_{0}, \ldots Z_{n}\right)$ in I to a polynomial $p\left(z_{1}, \ldots, z_{n}\right)$ in $K[z]$ as described in $\S 2.3$. Let J_{i} be the result of converting each polynomial of J in the same way. Then $I_{i}=J_{i}$. Therefore, for each i, the zero sets of I and J in \mathbf{P}^{n} have the same intersection with
the standard open set U_{i}.
Fix an irreducible projective variety $V \subseteq \mathbf{P}^{m}$ and a variety $W \subseteq V$. Let $F=\left\{P_{i}(z)\right\}_{i \in[1, n]}$ be a family of homogeneous polynomials in $K[Z]$ of the same degree. Let I be the ideal generated by F, and assume that $\bar{I}=I(V)$. Let $\phi: V \rightarrow \rightarrow \mathbf{P}^{n}$ be the rational map represented by (X, ψ), where $X=V-W$, and

$$
\psi(z)=\left[P_{i}(z)\right] .
$$

As in the affine case (§ 12.1), $\psi: X \rightarrow \mathbf{P}^{n}$ is a regular map with regular coordinate functions, and the domain of regularity of ϕ is X. Let $\pi: \Gamma_{\phi} \rightarrow V$ be the projection map. Again the pair $\left(\Gamma_{\phi}, \pi\right)$ is called the blowup of V along W, and $E=\pi^{-1}(W)$ is called the exceptional divisor associated with the blowup.
Let $Y \subseteq \mathbf{P}^{m} \times \mathbf{P}^{n}$ be the image of X under the map $a \mapsto(a, \psi(a))$. Let $S: \mathbf{P}^{m} \times \mathbf{P}^{n} \rightarrow \mathbf{P}^{N}$ be the Segre map. Then the map $\eta: X \rightarrow S(Y)$ given by $\eta(a)=S(a, \psi(a))$ is a regular isomorphism (proof omitted).

12.3. Factoring Rational Maps

Let V be an irreducible closed variety, and let $\phi: V_{1}-\rightarrow \mathbf{P}^{n}$ be a rational map. Then there exist a sequence of varieties $\left\{V_{i}\right\}_{i \in[1, m]}$, subvarieties $W_{i} \subseteq V_{i}$, maps $\pi_{i}: V_{i+1} \rightarrow V_{i}$, and a regular map $\psi: V_{m}-\rightarrow \mathbf{P}^{n}$ such that the following hold:

1. For each i in [1, $m-1$] and each $X_{i}=V_{i}-W_{i}$,
a. $\left(V_{i+1}, \pi_{i}\right)$ is the blowup of V_{i} along W_{i}.
b. There exists an injective regular map $\eta_{i}: X_{i} \rightarrow V_{i+1}$ such that π_{i} restricted to $\eta_{i}\left(X_{i}\right)$ is η_{i}^{-1}.
2. The composition of regular maps $\psi \circ \eta_{m-1} \circ \cdots \circ \eta_{1}$ is a regular map $\chi: X_{1} \rightarrow \mathbf{P}^{n}$. The rational map from V to \mathbf{P}^{n} represented by $\left(X_{1}, \chi\right)$ is ϕ.

(Proof omitted.)

See Figure 1. In this figure, the arrows $X_{i} \rightarrow V_{i}$ are the inclusion maps. All the solid arrows commute, and (X_{1}, χ) represents ϕ.

Figure 1: Factoring a rational map as a sequence of blowups.
In the example given in $\S 12.1$, we may take $m=2$ and $n=1$. Then

- $V_{1}=\mathbf{A}^{2}$, and $X_{1}=\mathbf{A}^{2}-\{(0,0)\}$.
- X_{2} is the set of points $S([1, a],[a])$ such that $a \neq(0,0)$. Therefore X_{2} is isomorphic to \mathbf{P}^{1}.
- V_{2} is X_{2} together with the points $S([0, a],[a])$ such that $a \neq(0,0)$. Therefore V_{2} is isomorphic to $\mathbf{P}^{2}-\{[1,0,0]\}$.
- $\psi: V_{2} \rightarrow \mathbf{P}^{1}$ is the regular map given by $S\left(\left[z_{0}, z_{1}, z_{2}\right],\left[z_{1}, z_{2}\right]\right) \mapsto\left[z_{1}, z_{2}\right]$. Notice that ψ is well-defined on V_{2}, because we never have $z_{1}=z_{2}=0$.
- For any point a in $\mathbf{A}^{2}-\{(0,0)\}$, applying η_{1} yields $S\left([1, a],[a]\right.$, and then applying ψ yields [a]. So $\psi \circ \eta_{1}$ agrees with ϕ on X_{1}.

13. The Dimension of a Variety

We now come back to the dimension of a variety, for which we gave an initial definition in § 4.
Let V be an irreducible variety. For any ring A, let $\operatorname{dim} A$ denote the Krull dimension of A (see Definitions for Commutative Algebra, §20). Here we take the dimension of the zero ring to be -1 . The following definitions of $\operatorname{dim} V$ are mutually equivalent (proof omitted):

1. $\operatorname{dim} V$ is the dimension of the closure of V according to the definition given in $\S 4$ for a closed variety.
2. $\operatorname{dim} V$ is the smallest integer $d \geq-1$ such that the general $(n-(d+1))$-plane (§4.4) is disjoint from V. Here we take the empty variety to be a -1-plane. For example:
a. The dimension of the empty variety \varnothing is -1 in \mathbf{P}^{n}, because the general m-plane is disjoint from \varnothing for $m=n-(-1+1)=n$.
b. A point a has dimension zero in \mathbf{A}^{3}, because for $m=3-(0+1)=2$, the general m-plane is disjoint from a, but for $m=3-(-1+1)=3$ the general m-plane (i.e., \mathbf{A}^{3}) is not disjoint from a.
c. \mathbf{A}^{3} has dimension 3 , because for $m=3-(3+1)=-1$, the general m-plane (i.e., the empty variety) is disjoint from \mathbf{A}^{3}, but for $m=3-(2+1)=0$, the general m-plane (i.e., the general point) is not disjoint from \mathbf{A}^{3}.
3. Let $K[V]$ denote the coordinate ring of $V(\S 7)$. Then $\operatorname{dim} V=\operatorname{dim} K[V]$.
4. Let a be any point of V, and let $\boldsymbol{O}_{a}(V)$ denote the local ring of V at $a(\S 7)$. Then $\operatorname{dim} V=\operatorname{dim} \boldsymbol{O}_{a}(V)$. This definition is independent of the choice of the point a (proof omitted).
5. Let $K(V)$ denote the field of fractions of $K[V]$ (§ 11). Let d be -1 if $K(V)=0$; otherwise let d be the transcendence degree of $K(V)$ over K (see Definitions for Commutative Algebra, § 19). Then $\operatorname{dim} V=d$.
Let V be a nonempty variety, and let $\left\{V_{i}\right\}$ be its irreducible components (§6.3). As in $\S 4.3$, we define the following:
6. The dimension of V is the maximum of the dimensions of the V_{i}. If all the V_{i} have the same dimension d, then we say that V has pure dimension d.
7. Let a be a point of V. We define the local dimension of V at a, written $\operatorname{dim}_{a} V$, to be the maximum of the dimensions of the irreducible components V_{i} that contain a.
In the rest of this section, V is a variety of dimension $d \geq 0$. We assume without loss of generality that $V \subseteq \mathbf{P}^{n}$; if V is affine or quasi-affine, we have $V \subseteq U_{i} \subseteq \mathbf{P}^{n}$, where U_{i} is one of the standard copies of \mathbf{A}^{n} in \mathbf{P}^{n} (§ 1.2).
The codimension of V, denoted codim V, is $n-d$.
Let $W \subseteq \mathbf{P}^{n}$ be a hypersurface (§4.4), and let $X=V \cap W$.
8. If W contains an irreducible component of V, then $\operatorname{dim} X=d$.
9. Otherwise $\operatorname{dim} X=d-1$.
(proof omitted).
Let $\left\{P_{i}\right\}_{i \in[1, k]}$ be a minimal set of homogeneous generators for the closure of V. If $k=n-d$, then we say that V is a complete intersection. In this case, V is generated by the smallest number of polynomials that can produce a variety of dimension d in \mathbf{A}^{n} or \mathbf{P}^{n}.
Fix a point a in V. Let an affine neighborhood of a be a set U such that (1) $U \subseteq U_{i} \subseteq \mathbf{P}^{n}$ for some standard affine set U_{i}; (2) U contains a; and (3) U is closed in U_{i}. The following properties are equivalent (proof omitted):
10. There exists an affine neighborhood U of a such that the ideal of polynomials in $K[U]$ that vanish on $U \cap V$ is generated by $n-d$ polynomials.
11. There exists a d-dimensional variety $W \subseteq \mathbf{P}^{n}$ such that $a \notin W$ and $V \cup W$ is a complete intersection.

If these properties hold, then we say that V is a local complete intersection at a.
V is a local complete intersection if it is a local complete intersection at every point a in V.

14. Hilbert Polynomials

Let $V \subseteq \mathbf{P}^{n}$ be a projective variety, and let $K[V]=K[Z] / I(V)$ (§ 7.2). For each natural number m, let $K[V]_{m}$ denote the set of homogeneous polynomials of $K[V]$ with degree m, and let $\operatorname{dim} K[V]_{m}$ denote the dimension of $K[V]_{m}$ as a vector space over V.

1. The Hilbert function of V is the function $h_{V}: \mathbf{N} \rightarrow \mathbf{N}$ given by

$$
h_{V}(m)=\operatorname{dim} K[V]_{m} .
$$

Because $\operatorname{dim} K[V]_{m}=\operatorname{dim} K[Z]_{m}-\operatorname{dim} I(V)_{m}$, we say that $h_{V}(m)$ is the codimension in $K[Z]_{m}$ of the space $I(V)_{m}$ of homogeneous polynomials of degree m that vanish on V.
2. There exist a polynomial $p_{V}(Z)$ and a natural number M such that for all $m \geq M, h_{V}(m)=p_{V}(m)$. The polynomial p_{V} is called the Hilbert polynomial of the projective variety V. The degree of p_{V} is the dimension of V (proof omitted).

15. Tangent Spaces; Smooth and Singular Points and Varieties

In this section we define the concept of a tangent space to a variety. We also define the related concepts of smooth and singular points of a variety.

15.1. The Zariski Tangent Space at a Point

Let V be a variety, and fix a point a of V. Let $\boldsymbol{O}_{a}(V)$ be the local ring of V at a (§7), and let \mathbf{m}_{a} be the maximal ideal in $\boldsymbol{O}_{a}(V)$ of polynomials that vanish at a.

1. Let F_{a} be the field $\boldsymbol{O}_{a}(V) / \mathbf{m}_{a}$. The Zariski cotangent space to V at a is the F_{a}-vector space defined as follows:

$$
T_{a}^{*}(V)=\mathbf{m}_{a} / \mathbf{m}_{a}^{2}
$$

$T_{a}^{*}(V)$ is a F_{a}-vector space because it is an $\boldsymbol{O}_{a}(V)$-module that is annihilated by \mathbf{m}_{a}.
2. The Zariski tangent space to V at a, denoted $T_{a}(V)$, is the dual space of $T_{a}^{*}(V)$, i.e., the space of linear maps $\lambda: T_{a}^{*}(V) \rightarrow F_{a}:$

$$
T_{a}(V)=\left(T_{a}^{*}(V)\right)^{*}
$$

Let V and W be varieties, and let $\psi: V \rightarrow W$ be a regular map. For each point a in V, ψ induces the following maps:

1. A $\operatorname{map} \psi^{*}: \boldsymbol{O}_{\psi(a)}(W) \rightarrow \boldsymbol{O}_{a}(V)$ given by $\psi^{*}(p)=p \circ \psi$.
2. A map $\theta: T_{a}(V) \rightarrow T_{\psi(a)}(W)$ given by $\theta(\lambda)=\lambda \circ \psi^{*}$, where $\lambda: T_{a}^{*}(V) \rightarrow F_{a}$ is an element of $T_{a}(V)=\left(T_{a}^{*}(V)\right)^{*}$.
In particular, when V is an affine variety, the embedding $\psi: V \rightarrow \mathbf{A}^{n}$ induces an embedding

$$
\theta: T_{a}(V) \rightarrow T_{\psi(a)}\left(\mathbf{A}^{n}\right)=K^{n}
$$

In this case the embedding θ has the following alternative and equivalent definition (proof omitted):

1. Fix a family $\left\{p_{i}\right\}_{i \in[1, m]}$ of polynomials in $K[z]$ that generate the ideal $I(V)$. For each i in $[1, m], p_{i}$ defines a differentiable function $f: K^{n} \rightarrow K$ given by $f_{i}(v)=p_{i}(v)$. Let $L\left(K^{n}, K\right)$ denote the space of linear maps $\lambda: K^{n} \rightarrow K$. The derivative $D f_{i}$ is the map from K^{n} to $L\left(K^{n}, K\right)$ given by

$$
D f_{i}(z)(h)=\sum_{j=1}^{n} D_{j} f_{i}(z)\left(h_{j}\right),
$$

where $D_{j} f_{i}(z): K \rightarrow K$ denotes the j th partial derivative of f_{i} (i.e., the derivative of f_{i} treated as a function of the single variable z_{j}), and h_{j} is the j th coordinate of h. See $\S 6.2$ of my paper The General Derivative.
2. The Zariski tangent space $T_{a}(V)$ is the set of all vectors h in K^{n} such that

$$
D f_{i}(a)(h)=0
$$

for all i in $[1, m]$.

Note the following:

1. $T_{a}(V)=\underset{i \in[1, m]}{\cap} T_{a}\left(V_{i}\right)$, where V_{i} is the zero set of f_{i}.
2. Fix an index i in $[1, m]$ and a point a in V. If $D f_{i}(a) \neq 0$, then $T_{a}\left(V_{i}\right)$ is the ordinary tangent space of the graph of f_{i} from calculus and differential geometry. For example, in \mathbf{A}^{2}, let $f_{i}(z)=z_{1}^{2}-z_{2}$. Then

$$
D f_{i}(z)(h)=2 z_{1} h_{1}-h_{2}=\left(2 z_{1},-1\right) \cdot h,
$$

so $T_{a}\left(V_{i}\right)$ is the space of vectors $h=\left(h_{1}, h_{2}\right)$ that are perpendicular to $\left(2 a_{1},-1\right)$.

15.2. Smooth and Singular Points

Let V be a variety in \mathbf{A}^{n} or \mathbf{P}^{n} of pure dimension d, and fix a point a of V.

1. The Zariski tangent space $T_{a}(V)$ is a subspace of K^{n} and is isomorphic to K^{m}, for some m with $d \leq m \leq n$ (§ 13) (proof omitted).
2. If $m=d$, then we say that a is a smooth point of V. Otherwise we say that a is a singular point of V.

Let V be a variety of pure dimension d.

1. The set of singular points of V is a subvariety of V (proof omitted). We denote this subvariety $V_{\text {sing }}$.
2. The set of smooth points of V is an open and dense subset of V (proof omitted). We denote this set V_{sm}.
3. If V has no singular points, then we say that V is a smooth variety. Otherwise V is a singular variety.
4. Assume that V is irreducible. If the field K has characteristic zero, then there exists a smooth irreducible variety W and a regular birational map $\phi: W \rightarrow V$ (proof omitted). If V is singular, then the map ϕ is called a resolution of singularities of V.

15.3. The Affine Tangent Plane at a Point

Let $V \subseteq \mathbf{A}^{n}$ be an affine variety. The affine tangent plane of V at a, denoted $\boldsymbol{T}_{a}(V)$, is the set of points b in \mathbf{A}^{n} such that $b-a$ lies in the Zariski tangent space $T_{a}(V)$, considered as a subspace of \mathbf{A}^{n}. If V has pure dimension d and a is a smooth point of V, then $\boldsymbol{T}_{a}(V)$ is a d-plane in \mathbf{A}^{n} and is the image of the d-plane $T_{a}(V)$ under the translation that takes the origin to a.
For example, let $K=\mathbf{C}$, let $n=2$, let V be the zero locus of $z_{1}^{2}-z_{2}$, and let $a=(1,1)$. Then

1. $T_{a}(V)$ is the line through $(0,0)$ perpendicular to the line through $(0,0)$ and $(2,-1)$.
2. $\boldsymbol{T}_{a}(V)$ is the line through $(1,1)$ perpendicular to the line through $(1,1)$ and $(3,0)$.

15.4. The Projective Tangent Plane at a Point

In this section, $V \subseteq \mathbf{P}^{n}$ is a projective variety, and a is a point of V with homogeneous coordinates $\left[a_{i}\right]$.
Fix a family $\left\{P_{i}\right\}_{i \in[1, m]}$ of homogeneous polynomials in $K[Z]$ that generate the ideal $I(V)$, and let $\left\{F_{i}\right\}_{i \in[1, m]}$ be the corresponding family of functions from K^{n+1} to K. The projective tangent plane of V at a, denoted $\boldsymbol{T}_{a}(V)$, is the set of points b in \mathbf{P}^{n} with homogeneous coordinates $\left[b_{i}\right]$ such that

$$
D F_{i}(a)(b)=0
$$

for all i in $[1, m]$. Note that $\boldsymbol{T}_{a}(V)$ is a well-defined subset of \mathbf{P}^{n}, because if $F_{i}(Z)$ is a homogeneous polynomial of degree d, then by the rule for differentiating polynomials

$$
D F_{i}(X)(Y)=\sum_{j=0}^{n} D F_{i}(X) Y_{j}
$$

is a bihomogeneous polynomial of degree $d-1$ in X and degree 1 in Y.
Let U_{k} be any of the standard affine open sets $U_{k} \subseteq \mathbf{P}^{n}$ containing a. Then

$$
\boldsymbol{T}_{a}\left(V \cap U_{k}\right)=\boldsymbol{T}_{a}(V) \cap U_{k},
$$

where \boldsymbol{T}_{a} on the left denotes the affine tangent plane (§ 15.3). Indeed, suppose $k=0$, and assume $a_{0}=1$. Choose any i in $[1, m]$ and let $F=F_{i}$.

1. By the Euler relation for homogeneous polynomials we have

$$
\sum_{j=0}^{n} D_{j} F(Z) Z_{j}=d \cdot F(Z)
$$

where d is the degree of F.
2. Because $F(a)=0$, we have

$$
\sum_{j=0}^{n} D_{j} F(a) a_{j} Z_{0}=d \cdot F(a) Z_{0}=0
$$

Therefore

$$
\begin{equation*}
D_{0} F(a) Z_{0}=D_{0} F(a) a_{0} Z_{0}=-\sum_{j=1}^{n} D_{j} F(a) a_{j} Z_{0} \tag{4}
\end{equation*}
$$

3. By definition, $\boldsymbol{T}_{a}(V)$ is the set of all b in \mathbf{P}^{n} such that

$$
\begin{equation*}
\sum_{j=0}^{n} D_{j} F(a) b_{j}=0 \tag{5}
\end{equation*}
$$

By (4), the left-hand side of (5) is

$$
\begin{align*}
\left(\sum_{j=1}^{n} D_{j} F(a) b_{j}\right)+D_{0} F(a) b_{0} & =\sum_{j=1}^{n} D_{j} F(a) b_{j}-\sum_{j=1}^{n} D_{j} F(a) a_{j} b_{0} \\
& =\sum_{j=1}^{n} D_{j} F(a)\left(b_{j}-a_{j} b_{0}\right) \tag{6}
\end{align*}
$$

4. When intersecting with U_{0}, we may assume $b_{0}=1$. Therefore, by (5) and (6), $\boldsymbol{T}_{a}(V) \cap U_{0}$ contains all and only the points satisfying

$$
\begin{equation*}
\sum_{j=1}^{n} D_{j} F(a)\left(b_{j}-a_{j}\right)=0 . \tag{7}
\end{equation*}
$$

These are exactly the points satisfying the definition of $\boldsymbol{T}_{a}\left(V \cap U_{0}\right)(\S 15.3)$.
Let $W \subseteq \mathbf{A}^{n+1}$ be the zero locus of the ideal $I(V)$, considered as a set of polynomials $p\left(z_{0}, \ldots, z_{n}\right)$. Then $\boldsymbol{T}_{a}(V)$ is the subspace of \mathbf{P}^{n} corresponding to $T_{a}(W)$ (proof omitted).

16. The Degree of a Variety

Let V and W be linear subspaces of \mathbf{P}^{n} (§ 4.4).

1. The span of V and W, denoted $\overline{V, W}$, is the set of all points $[a+b]$, where $[a]$ is a point of $V,[b]$ is a point of W, and $(a+b)_{i}=a_{i}+b_{i}$. Equivalently, $\overline{V, W}$ is the smallest linear subspace of \mathbf{P}^{n} that contains both V and W.
2. The dimension of $\overline{V, W}$ is the minimum of n and m, where $m=\operatorname{dim} V+\operatorname{dim} W-\operatorname{dim}(W \cap V)$ (proof omitted).
3. If V is a point a and W is a different point b, the span $\overline{a, b}$ is the unique line in \mathbf{P}^{n} passing through a and b.
4. Assume that V has dimension m and that W is a point a in $\mathbf{P}^{n}-V$. The span $\overline{a, V}$ is called a cone. It is the union of all the lines $\overline{a, b}$ for which b is a point of V. It is an $(m+1)$-plane in \mathbf{P}^{n}.

Let m be a natural number in $[0, n)$. Let V and W be subvarieties of \mathbf{P}^{n} such that V is isomorphic to \mathbf{P}^{m}, W is isomorphic to \mathbf{P}^{n-m-1}, and $V \cap W=\varnothing$.

1. The projection of $\mathbf{P}^{n}-V$ to W is the map $\pi_{V}: \mathbf{P}^{n}-V \rightarrow W$ that sends a point a of $\mathbf{P}^{n}-V$ to the intersection of W with the $(m+1)$-plane $\overline{a, V}$. This map is well-defined because the intersection is a single point (proof omitted). If $X \subseteq \mathbf{P}^{n}-V$ is a projective variety in \mathbf{P}^{n}, then $\pi_{V}(X)$ is a projective variety in $W=\mathbf{P}^{n-m-1}$ (proof omitted).
2. Up to projective equivalence (§8.2), we may choose V and W as follows:

- The points of V are the points of \mathbf{P}^{n} whose last $n-m$ homogeneous coordinates are zero.
- The points of W are the points of \mathbf{P}^{n} whose first $m+1$ homogeneous coordinates are zero.

In this case π_{V} is the standard coordinatewise projection map that takes $\left[a_{0}, \ldots, a_{m}, a_{m+1}, \ldots, a_{n}\right]$ to $\left[a_{m+1}, \ldots, a_{n}\right]$ (proof omitted). This map is well-defined on $\mathbf{P}^{n}-V$, because on that domain one of the coordinates a_{m+1} through a_{n} must be nonzero.
Let $V \subseteq \mathbf{P}^{n}$ be an irreducible variety of dimension m. We define the degree of V in the following ways, all of which are equivalent (proof omitted).

1. Let W be a general ($n-m-2$)-plane in \mathbf{P}^{n}. Then
a. $\pi_{W}(V)$ is an irreducible hypersurface in \mathbf{P}^{m+1} (proof omitted).
b. For any W, the degree of the irreducible homogeneous polynomial $P(Z)$ defining $\pi_{W}(V)$ is the same natural number d (proof omitted).
The degree of V is d.
2. Let X be a general $(n-m-1)$-plane in \mathbf{P}^{n}. Then
a. π_{X} defines a surjective map from V to \mathbf{P}^{m} (proof omitted).
b. For the general point a of \mathbf{P}^{m}, the set $\pi_{X}^{-1}(a)$ contains d points, for some natural number d (proof omitted).

The degree of V is d.
3. Let Y be a general $(n-m)$-plane in \mathbf{P}^{n}. Then V intersects Y in d points, for some natural number d that does not depend on Y (proof omitted). The degree of V is d.
4. Suppose V has dimension m, and let p_{V} be the Hilbert polynomial of $V(\S 14)$. Then the degree of V is m ! times the leading coefficient of p_{V}.
We write $\operatorname{deg} V$ to denote the degree of V.
Let V and W be quasi-projective varieties in \mathbf{P}^{n}.

1. Let a be a point of $V \cap W . V$ and W intersect transversely at a if V and W are smooth at a (§15.2) and the span of $\boldsymbol{T}_{a}(V)$ and $\boldsymbol{T}_{a}(W)$ is $\mathbf{P}^{n}(\S 15.4)$. For example, projecting from \mathbf{P}^{2} onto \mathbf{A}^{2}, let V be the curve $y=x^{2}$, and let W be the line $y=1$. Then V and W intersect transversely at $(1,1)$, because the tangent line to V and $(1,1)$ and the line $y=1$ span \mathbf{A}^{2}. On the other hand, if W is the line $y=0$, then V and W do not intersect transversely at $(0,0)$, because the tangent line to V at $(0,0)$ and the line $y=0$ span a space of dimension one.
2. Let $\left\{X_{i}\right\}$ be the irreducible components of $V \cap W$ (§3.3). V and W intersect generically transversely if, for each i, V and W intersect transversely at the general point a of X_{i}.
3. Assume that V has pure dimension d_{V}, W has pure dimension $d_{W}, d_{V}+d_{W} \geq n$, and V and W intersect generically transversely. Then

$$
\operatorname{deg}(V \cap W)=(\operatorname{deg} V)(\operatorname{deg} W)
$$

This statement is called Bézout's Theorem (proof omitted).
Let V and W be quasi-projective varieties in \mathbf{P}^{n}, each with pure dimension.

1. V and W intersect properly if

$$
\operatorname{codim}(V \cap W)=\operatorname{codim} V+\operatorname{codim} W
$$

or equivalently

$$
\operatorname{dim}(V \cap W)=\operatorname{dim} V+\operatorname{dim} W-n .
$$

2. Assume that V and W intersect properly, and let $\left\{X_{i}\right\}$ be the irreducible components of $V \cap W$. There exists a family $\left\{m_{i}\right\}$ of natural numbers such that the following properties hold (proof omitted):
a. $m_{i} \geq 1$, and $m_{i}=1$ if and only if V and W intersect transversely at a general point of X_{i}.
b. $(\operatorname{deg} V)(\operatorname{deg} W)=\sum_{i} m_{i} \operatorname{deg} X_{i}$.

For each i, m_{i} is called the intersection multiplicity or intersection number of V and W along X_{i}.

17. Parameter Spaces

In this section, $B \subseteq \mathbf{P}^{m}$ is a variety, $\pi: \mathbf{P}^{m} \times \mathbf{P}^{n} \rightarrow \mathbf{P}^{m}$ is the map $(b, c) \mapsto b$, and $\phi: \mathbf{P}^{m} \times \mathbf{P}^{n} \rightarrow \mathbf{P}^{N}=\mathbf{P}^{m n+m+n}$ is the Segre map (§ 9.2).
Let $V \subseteq \phi\left(B \times \mathbf{P}^{n}\right)$ be a variety. V induces a family of subsets $\left\{V_{b}\right\}_{b \in B}$ of \mathbf{P}^{N} according to the rule $V_{b}=\phi\left(\pi^{-1}(b)\right)$.

1. If each set $V_{b} \subseteq \mathbf{P}^{N}$ is a variety, then we say that $F=(B, V)$ is an algebraic family of varieties in \mathbf{P}^{N}. We call B the base of F, and we call V the total space of F.
2. Let $F=(B, V)$ be an algebraic family of varieties in \mathbf{P}^{N}. If V is closed, then we say that F is a closed algebraic family. In this case, F has the following properties:
a. Each V_{b} is the intersection of the closed sets V and $\phi\left(\{b\} \times \mathbf{P}^{n}\right)$, so each V_{b} is a projective variety.
b. If B is an affine variety, then F is defined by a set of homogeneous polynomials in $n+1$ variables whose coordinates are polynomials in m variables.
c. If B is a projective variety, then F is defined by a set of homogeneous polynomials in $n+1$ variables whose coordinates are homogeneous polynomials in $m+1$ variables.
We now define the concept of a reduced algebraic family of varieties. ${ }^{3}$ Let $F=(B, V)$ be an algebraic family of varieties in \mathbf{P}^{N} with base $B \subseteq \mathbf{P}^{m}$ and total space $V \subseteq \mathbf{P}^{N}$.
3. For any point b of B and any point v of $V_{b} \subseteq V$, let $f(b, v): \boldsymbol{O}_{b}(B) \rightarrow \boldsymbol{O}_{v}(V)$ be the map $g \mapsto g \circ \pi$, where g is a regular function germ (§ 7.2). This map is well-defined because
a. For any polynomials p and q in $K[z]$, if $p(b)=q(b)$ for all b in B then $(p \circ \pi)(v)=(q \circ \pi)(v)$ for all v in V, so $p \sim q$ in $K[B]$ implies $f(b, v)(p) \sim f(b, v)(q)$ in $K[V]$.
b. For any polynomial q in $K[B]$, if $q(b) \neq 0$ then $(q \circ \pi)(v) \neq 0$, so for any function germ $g=p / q$ in $\boldsymbol{O}_{b}(B), f(b, v)(p / q)=(p \circ \pi) /(q \circ \pi)$ is an element of $\boldsymbol{O}_{v}(V)$.
4. Fix point b of B and a point v of V_{b}. Let $\mathbf{m}_{b} \subseteq \boldsymbol{O}_{b}(B)$ be the maximal ideal of functions vanishing at b. If the set $f(b, v)\left(\mathbf{m}_{b}\right)$ generates the ideal of V_{b} in $\boldsymbol{O}_{v}(V)$, then we say that the algebraic family F is reduced with respect to the pair (b, v).
5. If, for all points b in B and all points v in V_{b}, F is reduced with respect to (b, v), then we say that F is reduced.
6. If, for all points b in B and the generic point v of V_{b}, F is reduced with respect to (b, v), then we say that F is generically reduced.
Now we define what it means for the variety V to be a parameter space for the family $F=(B, V)$. Fix a variety $C \subseteq \mathbf{P}^{m_{C}}$ for some natural number m_{C}.
7. Let $R(F, C)$ be the set of regular maps from C to B.
8. Let $\boldsymbol{F}(F, C)$ be the set of families $\left\{X_{c}\right\}_{c \in C}$ of varieties in \mathbf{P}^{n} parameterized by C such that for each c in C, $X_{c}=V_{b}$ for some b in B. Here equality means set equality as subsets of \mathbf{P}^{n}.
9. For any regular map $\psi: C \rightarrow B$, define a family of varieties $G(F, C, \psi)=\left\{X(F, C, \psi)_{c}\right\}_{c \in C}$ according to the rule $X(F, C, \psi)_{c}=V_{\psi(c)}$.
10. Let $\Phi(F, C): R(F, C) \rightarrow \boldsymbol{F}(F, C)$ be the map that takes ψ to $G(F, C, \psi)$.

Let $\boldsymbol{F}_{\mathrm{cr}}(F, C)$ be the subset of $\boldsymbol{F}(F, C)$ consisting of all closed reduced algebraic families. If, for every variety C, $\Phi(F, C)$ is a bijection between $R(F, C)$ and $\boldsymbol{F}_{\mathrm{cr}}(F, C)$, then we say that the variety V is a parameter space for F.

[^1]Let $\boldsymbol{F}_{\text {cgr }}(F, C)$ be the subset of $\boldsymbol{F}(F, C)$ consisting of all closed, generically reduced algebraic families. If, for every variety $C, \Phi(F, C)$ is a bijection between $R(F, C)$ and $\boldsymbol{F}_{\text {cgr }}(F, C)$, then we say that the variety V is a cycle parameter space for F.
Notice that each variety V_{b} in the family $F=\left\{V_{b}\right\}$ has the form $\phi\left(\{b\} \times W_{b}\right)$, for some set $W_{b} \subseteq \mathbf{P}^{n}$. It is often the case that $\left\{W_{b}\right\}_{b \in B}$ is also a family of varieties, and it is useful to think of V as a parameter space for this family.

18. Moduli Spaces

In this section, we define the concept of a moduli space. Like a parameter space (§ 17), a moduli space is a family of varieties parameterized by another variety, with some additional structure. Unlike a parameter space, the varieties need not be embedded in a fixed space \mathbf{P}^{N}.
Fix a variety B. Let V be a variety, and let $\pi: V \rightarrow B$ be a map. The map π induces a family of sets $\left\{V_{b}\right\}_{b \in B}$ according to the rule $V_{b}=\pi^{-1}(b)$.

1. If each V_{b} is a variety, then we may form the family $\left\{\left[V_{b}\right]\right\}_{b \in B}$ of isomorphism classes of varieties (§8.3). In this case we say that $F=(B, V, \pi)$ is an algebraic family of abstract varieties. Again we call V the total space of F, and we call B the base of F.
2. Let F be an algebraic family of abstract varieties. We say that F is reduced if it is reduced according to the definition given in $\S 17$ for algebraic families of varieties in \mathbf{P}^{N}. This definition is equally valid for families of abstract varieties.
Fix a variety B, and let $S=\left\{X_{b}\right\}_{b \in B}$ be a standard (i.e., not necessarily an algebraic) family of abstract varieties.
3. For any variety C, define the following:
a. Let $\boldsymbol{F}(S, C)$ be the set of algebraic families of abstract varieties (C, V, π) such that for each c in C, we have $\left[V_{c}\right]=X_{b}$ for some b in B. Here equality means identity of abstract varieties (i.e., isomorphism classes).
b. For any family $F=(C, V, \pi)$ in $\boldsymbol{F}(S, C)$, let $\psi(C, F): C \rightarrow B$ be the map $c \mapsto b$, where $\left[V_{c}\right]=X_{b}$.
4. B is a coarse moduli space for the family S if the following hold:
a. For any variety C and any reduced family F in $\boldsymbol{F}(S, C), \psi(C, F)$ is a regular map.
b. B is unique up to isomorphism in the following sense. Suppose the following:
i. Item a holds for another variety B^{\prime} and another family $S^{\prime}=\left\{X_{b}^{\prime}\right\}_{b \in B^{\prime}}$.
ii. $\eta: B^{\prime} \rightarrow B$ is a regular bijection.
iii. For every variety C and for every family F in $\boldsymbol{F}(S, C)$ there is a family F^{\prime} in $\boldsymbol{F}\left(S^{\prime}, C\right)$ such that $\psi(C, F)=\eta \circ \psi\left(C, F^{\prime}\right)$.
Then B^{\prime} is isomorphic to B.
Notice that unlike a parameter space, a coarse moduli space is not the total space of an algebraic family. If there exists an algebraic family $F=(B, V, \pi)$ such that $\left\{\left[V_{b}\right]\right\}_{b \in B}=S$, then we say that F is a tautological family over B. The variety V in the tautological family is then analogous to the parameter space V of an algebraic family in \mathbf{P}^{N}. Suppose there exists a tautological family F over B.
5. For any variety C, let $R(S, C)$ be the set of regular maps from C to B, and let $\boldsymbol{F}_{\mathrm{r}}(S, C)$ be the subset of $\boldsymbol{F}(S, C)$ consisting of reduced families.
6. Let $\Phi(S, C): \boldsymbol{F}_{\mathrm{r}}(S, C) \rightarrow R(S, C)$ be the map that takes a family G to the regular map $\psi(C, G)$. If Φ is a bijection, then we say that F is a universal family. In this case, we say that B is a fine moduli space for the family S.

References

Bocchino, R. Definitions for Commutative Algebra. https://rob-bocchino.net/Professional/Mathematics.html.
Bocchino, R. The General Derivative. https://rob-bocchino.net/Professional/Mathematics.html.
Fulton, W. Intersection Theory. Springer Verlag, 1984.

Fulton, W. Algebraic Curves: An Introduction to Algebraic Geometry. https://dept.math.lsa.umich.edu/~wfulton/CurveBook.pdf 2008.

Harris, J. Algebraic Geometry: A First Course. Springer Verlag, 1992.
Hartshorne, R. Algebraic Geometry. Springer Verlag, 1977.
Kirwan, F. Complex Algebraic Curves. Cambridge University Press 1992.
Kunz, E. Introduction to Commutative Algebra and Algebraic Geometry. Tr. Michael Ackerman. Birkhäuser 1985. Shafarevich, I. Basic Algebraic Geometry 1: Varieties in Projective Space. 3d ed. Springer Verlag, 2013.

Index

abstract variety: § 8.3
affine change of coordinates: $\S 8.1$
affine coordinate transform: § 8.1
affine line: § 1.1
affine neighborhood: § 13
affine plane curve: § 4.4
affine plane: § 1.1
affine space: § 1.1
affine tangent plane: § 15.3
affine variety: § 2.1
algebraic curves: § 4.4
algebraic family of abstract varieties: § 18
algebraic family of varieties in \mathbf{P}^{N} : § 17
algebraic set: § 2.4
base: §§ 17, 18
basis: § 5.1
Bézout's Theorem: § 16
bidegree: § 9.2
bihomogeneous: § 9.2
birational: § 11.6
birationally isomorphic: § 11.6
blowup: §§ 12.1, 12.2
closed algebraic family: § 17
closed in S : § 5.1
closed: §§ 5, 6.3
closure: § 5.1
coarse moduli space: § 18
codimension: §§ 13, 14
complete intersection: § 13
complex algebraic curves: § 4.4
composition: § 11.5
cone: § 16
coordinate function: § 7.1
coordinate map: § 8.1
coordinate ring: §§ 7.1, 7.2
curve: § 4.4
cut out by: §§ 2.1, 2.2
cycle parameter space: § 17
degree: §§ 2.2, 11.7, 16
dense in S : § 5.1
dimension: §§ 4.1, 4.2
distinguished open sets: § 5.1
domain of regularity: § 11.2
dominant: § 11.2
d-plane: § 4.4
equal bidegree: § 9.2
exceptional divisor: §§ 12.1, 12.2
extrinsic property: § 8.3
fine moduli space: § 18
finite degree: § 11.7
general object: § 10
generated by: §§ 2.1, 2.2
generically finite: § 11.7
generically reduced: § 17
graph: § 11.4
Hilbert basis theorem: § 3.1
Hilbert function: § 14
Hilbert Nullstellensatz: §§ 3.1, 3.2
Hilbert polynomial: § 14
homogeneous coordinates: § 1.2
homogeneous ideal: § 3.2
homogeneous: § 2.2
hyperplane: § 4.4
hypersurface: § 4.4
image: § 11.4
indeterminacy locus: § 11.2
intersect generically transversely: § 16
intersect properly: § 16
intersect transversely at a : § 16
intersection multiplicity: § 16
intersection number: § 16
intersection theory: § 16
intrinsic property: § 8.3
inverse image: § 11.4
irrational: § 11.6
irreducible components: § 3.3
irreducible: §§ 2.4, 6.3
isomorphic: §§ 8.1, 8.2
isomorphism class: § 8.3
isomorphism: §§ 8.1, 8.2
line: § 4.4
linear subspace: § 4.4
local complete intersection: § 13
local dimension: §§ 4.3, 13
local ring at a : § 7.2
local ring of V at a : § 7.1
moduli space: § 18
morphism: §§ 8.1, 8.2
open in S : § 5.1
open sets: § 5
parameter space: § 17
parameterized by: § 10
plane: § 4.4
polynomials: §§ 7.1, 7.2
product: § 9.2
projection: § 16
projective change of coordinates: $\S 8.2$
projective coordinate transform: § 8.2
projective line: § 1.2
projective plane curve: § 4.4
projective plane: § 1.2
projective space: § 1.2
projective tangent plane: § 15.4
projective variety: § 2.2
projectively equivalent: § 8.2
pure dimension d : §§ 4.3, 13
quasi-affine variety: § 6.1
quasi-projective variety: § 6.2
radical: § 3.1
rational function field: § 11.1
rational functions: § 11.1
rational maps: § 11.2
rational: § 11.6
reduced: §§ 17, 18
regular at: § 7.1
regular coordinate functions: $\S 8.2$
regular function germs: § 7.1
regular isomorphism: § 8.1
regular map: §§ 8.1, 8.2
regular on U : § 7.2
regular on: § 7.1
represented by: § 7.1
resolution of singularities: § 15.2
saturation: § 12.2
Segre embedding: § 9.2
Segre map: § 9.2
singular point: § 15.2
singular variety: § 15.2
smooth point: § 15.2
smooth variety: § 15.2
space: § 1
span: § 16
standard cover: § 1.2
subset topology: § 5.1
subvariety: § 2.4
surface: $\S 4.4$
tautological family: § 18
topological space: § 5
topology: § 5
total space: $\S \S 17,18$
universal family: § 18
vanishing ideal: §§ 3.1, 3.2
variety: § 6.3
Zariski cotangent space: § 15.1
Zariski tangent space: § 15.1
Zariski topology: §§ 5, 5.1, 5.2
zero locus: § 2.1
zero set: § 2.1

[^0]: ${ }^{1}$ If you have not seen the term "function germ" before, you may be confused as to what a function germ is and/or why we need to define such a thing. The idea is to focus on the behavior of a function near a point a, and to abstract away details such as the domain of definition of the function or the behavior of the function on points away from a. An example of a function germ from complex analysis is a power series $P(z)$ that converges in a neighborhood of zero. If we specify a domain of definition U inside the radius of convergence, then we get a function $\left.P(z)\right|_{U}: U \rightarrow \mathbf{C}$; if we don't specify a domain, then we get a function germ at zero. All the functions $\left.P(z)\right|_{U}$ that we could get by specifying a domain U that contains a are in some sense equivalent.

[^1]: ${ }^{2}$ If V and W are affine plane curves, then m_{i} has a constructive definition that is relatively straightforward. See [Fulton 2008], § 3.3. If V and W are general quasi-projective varieties, then the constructive definition of m_{i} requires the machinery of intersection theory, which is a subtopic of modern algebraic geometry. See [Fulton 1984].
 ${ }^{3}$ Following [Harris 1992], we introduce this concept in order to define parameter spaces in the language of varieties. Modern algebraic geometry uses the alternative concept of a "flat family of schemes." See [Harris 1992], p. 267.

