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This document defines concepts used in the area of mathematics known as category theory. Category theory is the

study of categories, i.e., collections of objects and “arrows” (usually mappings) between them. Examples of cate-

gories described as objects (with arrows) include sets (with functions), groups (with homomorphisms), and vector

spaces (with linear maps). In fact most areas of mathematics use categories in one way or another, since they all

involve mappings between structures. The language of categories provides a way to unify all these areas of mathe-

matics as specific instances of the same general theory.

The motivation for this document is the same as stated in my paper Definitions for Commutative Algebra: it is not so

easy to remember all these definitions, and it is not so easy to extract them from the textbooks in which they are

embedded. A little summarizing can go a long way here.

Note on typography: In discussions of category theory, it is customary to omit parentheses as much as possible in

function applications. For example, whereas in algebra or analysis we might write f (a) for the mapping f applied

to the value a, in category theory we usually write f a. We generally follow that practice here.

Sometimes we will string three or more symbols together without parentheses, e.g., a b c. Again this is common

practice. We will assume left associativity unless otherwise specified, e.g., a b c means (a b) c.

1. Set Theory

The standard development of category theory is based on set theory. So we begin with set theory. We use ZFC, i.e.,

Zermelo-Fraenkel set theory with the axiom of choice. For an introduction to ZFC, see my paper Zermelo-Fraenkel

Set Theory.

A universe is a set U with the following properties:

1. For every nonempty set S ∈ U , every element of S is an element of U . That is, U is transitively closed with

respect to membership (a member of a member is a member).

2. Every axiom of ZFC holds after making the following replacements:

a. Replace all formulas ∀x p with ∀x(x ∈ U ⇒ p).

b. Replace all formulas ∃x p with ∃x(x ∈ U ∧ p).

Intuitively, U is a collection of sets that (1) is rich enough to support all the operations provided by ZFC; and (2) is

itself a set. ZFC itself does not provide any such set; in particular there is no “set of all sets” in ZFC.

We assume the existence of a universe U that contains all the objects we ever need for ordinary (i.e., non-category-

theoretic) mathematics. For historical reasons, we call the members of U small objects, although “ordinary mathe-

matical objects” would also be apt. If a ZFC set S is not small (i.e., is not a member of U), then we will call S a

large set. In particular, U is a large set, since by the Axiom of Regularity we have U ∉ U . The large sets are for

category theory only; all non-category-theoretic mathematics uses small sets.

With this division of sets into small and large, we can construct the set of all small (i.e., ordinary mathematical)

objects of a particular type. For example, we can construct the set of all small sets, or the set of all small groups.

These are just all the sets or groups that are members of U . This operation is valid by the Axiom Schema of Specifi-

cation. In general, the set of all small objects of a particular type is a large set. We will use large sets to define cate-

gories.1

1 An alternate foundation for category theory uses Von Neumann-Bernays-Gödel set theory (NBG). This theory distinguishes between sets

and proper classes which are not sets. For example, in NBG, the collection of all sets is a proper class. We can reconcile the two foundations by

thinking of the universe set U in the ZFC-based theory as a proper class in the NBG-based theory. The NBG-based theory provides less flexibil-

ity when constructing large categories: for example, one can take the power set of the large set U , but it is not possible to take the “power class”
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2. Categories

A category is a tuple (O, A, I , ), defined as follows:

1. O is a set of objects.

2. A is a set of arrows a
f

→ b. Here f is a label that uniquely identifies the arrow, and a and b are members of

O. We also write an arrow a
f

→ b by writing f : a → b, or by writing f if the objects a and b are implied. We

write a → b to denote any arrow from a to b, without specifying the label.

3. I : O → A is a mapping that assigns to each object a in O an identity arrow denoted a
ida→ a or a

1a→ a.

4. An ordered pair of arrows (a
f

→ b, c
g

→ d) is called composable if b = c. Let P ⊆ A × A be the set of all

pairs of composable arrows. Then : P → A is a mapping that assigns to each pair (a
f

→ b, b
g

→ c) ∈ P a

composite arrow a
f

→ b
g

→ c or a
g f
→ c, such that the following properties hold:

a. For all pairs of composable pairs of arrows (( f , g), (g, h)), we have associativity, i.e.,

h (g f ) = (h g) f .

In light of this identity, we can omit the parentheses and write h g f .

b. For all arrows a
f

→ b, we hav e

f 1a = 1b f = f .

Note that when writing a composite a
f

→ b
g

→ c with arrows, the order of arrows is left to right, but in the open cir-

cle notation g f , the order is right to left. The “backwards” ordering in the circle notation is motivated by the

order of application in mappings of sets, e.g., (g f ) x = g ( f x).

In item 2, the object a is called the domain of f and written dom f . The object b is called the codomain of f and

written cod f . We say that an arrow goes from its domain to its codomain. An ordered pair of arrows ( f , g) is com-

posable if and only if the codomain of f equals the domain of g.

Distinct labels represent distinct arrows, even with the same domain and codomain. For example, a
f

→ b and a
g

→ b

are distinct arrows if f and g are distinct labels.

Categories abound in mathematics. For example, let V be a set containing some sets and all mappings between

them. We define the category SetV as follows:

1. O is the set of all sets in V .

2. A is the set of all mappings in V between sets in V . An arrow a
f

→ b is a mapping f : a → b.

3. I assigns to each set S in O the identity mapping on S.

4. is ordinary composition of mappings between sets, i.e.,

g f = x → g ( f x).

When V = U (§ 1), SetV = Set, the category of all small sets and small mappings between them.2

We define the categories GrpV and Grp similarly, replacing “set” with “group” and “mapping” with “group homo-

morphism.” Similarly we can define RngV and Rng (rings with ring homomorphisms) and R-ModV and R-Mod

(modules over a commutative ring R with R-module homomorphisms). Thus the concept of a category captures

what is common among sets, groups, rings, R-modules, and many other mathematical structures.

We often omit the symbol when writing a composition of arrows. For example, instead of g f we may write g f .

In this notation, when the composition of g and f is a map applied to the element a, we may write g f  a without

ambiguity. By definition (g f ) a = (g f ) a = g ( f a).

of a proper class. See [Mac Lane 1998], pp. 23−24.
2 [Mac Lane 1998] refers to SetV as Ens. Apparently this notation comes from ensemble, the French word for set.
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Fix a category C = (O, A, I , ). A category C′ = (O′, A′, I ′, ′) is a subcategory of C if each of the elements O′, A′,
I ′, and ′ is included in the corresponding element of C (this means set inclusion, treating mappings as sets of

ordered pairs).

A discrete category is a category in which the arrow set A contains only the identity arrows for the objects in O.

Given any discrete category C, there is a corresponding set of objects O; and given any set of objects S we can make

it into the set O of a discrete category by adding all the identity arrows. Thus discrete categories correspond to sets.

For example, the category consisting of objects 1, 2, and 3 with an identity arrow for each object corresponds to the

set {1, 2, 3}.

When C is a category, we will write c ∈ C to mean “c is an object of C,” i.e., C = (O, A, I , ) and c ∈ O.

3. Diagrams

Fix a category C. A diagram in C is a written representation of a collection of objects and arrows of C, in which

the objects appear as letters or symbols, each arrow goes from its domain object to its codomain object, and the

arrows appear with or without labels. For example, the representation a
f

→ b of the arrow f from a to b is a dia-

gram. We may also write a → b, omitting the label f . As another example, Figure 1 shows objects a, b, and c and

arrows a
f

→ b, b
g

→ c, and a
h

→ c.

a

b

c

f g

h

Figure 1: A diagram.

Let D be a diagram. We say that D is commutative (or commutes) if every path through the diagram with the same

endpoints, treating successive arrows as composition, represents the same map. For example, the diagram shown in

Figure 1 commutes if h = g f .

4. Hom Sets

Fix a category C and objects a and b of C. We write homC (a, b) or C(a, b) to denote the set of all arrows a
f

→ b

from a to b in C. We call this set a hom set. (The terminology comes from abstract algebra; “hom” stands for

homomorphism. A better name would be an arrow set.) We also denote this set hom(a, b) when the category C is

clear.

We may represent the associativity of composition of arrows as the commutative diagram of hom sets shown in Fig-

ure 2.

hom(c, d) × hom(b, c) × hom(a, b) hom(b, d) × hom(a, b)

hom(c, d) × hom(a, c) hom(a, d)

(h, g, f ) → (h g, f )

(h, g, f ) → (h, g f )

(h, g f ) → h (g f )

(h g, f ) → (h g) f

Figure 2: A commutative diagram representing the associativity of composition of arrows.

In some categories, hom sets have additional structure. For example, in the category R-Mod of modules over the

commutative ring R, each hom set is itself an R-module.
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Fix a category C and arrows a′
f

→ a and b
g

→ b′ of C.

1. We write hom( f , g) or C( f , g) to denote the mapping from hom(a, b) to hom(a′, b′) giv en by

h → g h  f .

We say that hom is contravariant in its first argument, because it reverses the positions of a and a′. We take

up this idea further below, in the section on functors.

2. We write hom( f , b) or C( f , b) in the case where b′ = b and g = 1b. hom( f , b) is the mapping h → h f that

says, “Given a homomorphism h, construct a new homomorphism hom( f , b) h by composing h with f on the

right.”

3. We write hom(a, g) or C(a, g) in the case where a′ = a and f = 1a. hom(a, g) is the mapping h → g h that

says, “Given a homomorphism h, construct a new homomorphism hom(a, g) h by composing h with g on the

left.”

Many authors write f * for hom( f , b) and g* for hom(a, g).

5. Properties of Objects and Arrows

Fix a category C and an arrow a
f

→ b in C.

1. f is monic or left cancellable if for every object c and pair of arrows c
g

→ a and c
h

→ a such that f g = f h,

we have g = h. In Set, the monic arrows are the injective maps.

2. f is epi or right cancellable if for every object c and pair of arrows b
g

→ c and b
h

→ c such that g f = h f ,

we have g = h. In Set, the epi arrows are the surjective maps.

3. A right inverse for f (also called a section of f ) is an arrow b
g

→ a with f g = 1b. If f has a right inverse,

then f is epi. Indeed, if h f = h′ f , then h f  g = h′ f g, so h 1b = h′ 1b, so h = h′.

4. A left inverse for f (also called a retraction for f ) is an arrow b
g

→ a with g f = 1a. If f has a left inverse,

then f is monic. Indeed, if f h = f h′, then g f  h = g f  h′, so 1a h = 1a h′, so h = h′.

5. An inverse for f is an arrow b
f −1

→ a that is both a right inverse and a left inverse for f . Such an arrow, if it

exists, is unique. If f −1 exists, then we say that f is invertible. We also say that f is an isomorphism and

that a and b are isomorphic, and we write a ≅ b. If ( f , g) is a composable pair of invertible arrows, then

(g f )−1 = f −1 g−1.

Fix a category C and an arrow a
f

→ a in C.

1. f is idempotent f f = f .

2. f splits if it is idempotent and there exist arrows a
g

→ b and b
h

→ a such that f = h g and g h = 1b. In this

case, g has a right inverse and so is epi, and we say that g is a split epi. Similarly, h has a left inverse and so

is monic, and we say that h is a split monic.

The concept of an arrow that splits generalizes the concept of a split exact sequence in homological algebra. Fix a

ring R, let B and C be R-modules (i.e., objects in the category R-Mod), and let A = B ⊕ C. A split exact sequence

is a diagram of the form

0 → B
h

→ A = B ⊕ C
h′
→ C → 0

where h b = (b, 0) and h′ (b, c) = c. Setting g: A → B = (b, c) → b and f : B → B = h g = (b, c) → (b, 0), we see

that f is idempotent, f = h g, and g h = b → b = 1B. Therefore f splits in the category theoretic sense. Similarly,

if we set g′: C → A = c → (0, c), then f ′ = g′ h′ splits.

Fix a category C and an object a in C.

1. a is initial if for every object b in C, there is exactly one arrow a → b. An initial object a is unique up to iso-

morphism. Indeed, if a′ is an initial object, then there are unique arrows a → a′ and a′ → a, the unique arrow

a → a′ → a must be a
1a→ a, and similarly for the unique arrow a′ → a → a′. Therefore the arrows a → a′
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and a′ → a are inverses of each other.

2. a is terminal if for every object b in C, there is exactly one arrow b → a. By an argument similar to the one

we made for an initial object, a terminal object is unique up to isomorphism.

3. a is a null object if it is both initial and terminal. For example, in the category R-Mod, the zero module 0 is a

null object. The null object, if it exists, is unique up to isomorphism.

Fix a category C with a null object z, and fix objects a and b of C. Let f be the unique arrow a → z and g be the

unique arrow z → b. The zero arrow from a to b, denoted a
0

→ b, is the composite arrow g f .

6. Functors

Fix categories C = (O, A, I , ) and C′ = (O′, A′, I ′, ′). A functor F from C to C′ is a pair of maps F : O → O′ and

F : A → A′ such that

1. For all objects a in O, F 1a = 1F a.

2. One of the following conditions holds:

a. F is covariant:

i. For all arrows a
f

→ b in A, there is a corresponding arrow F a
F f
→ F b in A′.

ii. For all pairs of composable arrows ( f , g) in A × A, F(g f ) = F g F f .

b. F is contravariant:

i. For all arrows a
f

→ b in A, there is a corresponding arrow F b
F f
→ F a in A′.

ii. For all pairs of composable arrows ( f , g) in A × A, F(g f ) = F f F g.

Covariant functors preserve the directions of the arrows, and contravariant functors reverse the directions.

In this document, we will write F : C → C′ to denote a covariant functor F from C to C′. We will write a contravari-

ant functor F from C to C′ as F : C′ ← C. See § 8 for an alternate notation.

Fix a category C. Let V be a set containing (1) every subset of the set of arrows of C and (2) every mapping

between any two such subsets. We associate functors with the hom sets of C as follows:

1. Fix an object b of C. Define the functor homC (−, b) = C(−, b): SetV ← C by the maps a → C(a, b) and

f → C( f , b). This functor is contravariant because it maps f : a′ → a to h → h f : C(a, b) → C(a′, b).

2. Fix an object a of C. Define the functor C(a, −): C → SetV by the maps b → C(a, b) and g → C(a, g). This

functor is covariant because it maps g: b → b′ to h → g h: C(a, b) → C(a, b′).
When C has small hom sets, we can replace SetV with Set.

An ordered pair of functors (F : CF → C′F , G: CG → C′G) is composable when CG = C′F . Giv en a pair of compos-

able functors, define the functor G F : CF → C′G by the maps a → G(F a) and f → G(F f ). This functor is

called the composition associated with the pair (F , G). It is associative. As when composing arrows (§ 2), we often

write G F instead of G F .

Fix a category C. The identity functor for C, denoted IC , is the functor defined by the identity maps a → a and

f → f . It is both covariant and contravariant.

Let V be a set containing some categories and all the mappings defining covariant functors between pairs of those

categories. By the previous two paragraphs, we can form CatV , the category of all categories in V , with covariant

functors in V as arrows. If V = U (i.e., if our universe of small or ordinary mathematical objects contains all the cat-

egories of interest), then we can form the category Cat of all small categories.

Fix categories C = (O, A, I , ) and C′ = (O′, A′, I ′, ′). A functor F : C → C′ is an isomorphism if the maps

F : O → O′ and F : A → A′ are bijections. In this case, each map has an inverse, and so there is an inverse functor

F−1: C′ → C such that F−1 F = IC and F F−1 = IC′.

A functor that “forgets” some structure of a category is called a forgetful functor. For example, we may define a

forgetful functor from Grp to Set that maps each object (group) in Grp to its underlying set and each arrow (group

homomorphism) in Grp to its underlying map of sets. The functor forgets the group structure associated with the

sets and maps.
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Fix categories C = (O, A, I , ) and C′ = (O′, A′, I ′, ′) and a functor F : C → C′. For each pair of objects a and b in

C, F induces a map Fa,b: C(a, b) → C(F a, F b); it is just the map F : A → A′ restricted to C(a, b) ⊆ A.

1. F is full if, for every pair of objects a and b in C, Fa,b is surjective.

2. F is faithful if, for every pair of objects a and b in C, Fa,b is injective.

A functor that is both full and faithful is called fully faithful. In this case, every map Fa,b is a bijection. However,

this does not imply that F is an isomorphism, because the map F : O → O′ may not be a bijection.

Fix a category C = (O, A, I , ) and a subcategory C′ = (O′, A′, I ′, ′) of C (§ 2). The inclusion maps S: O′ → O and

S: A′ → A form a faithful functor S, called the inclusion functor. If S is full, then we say that C′ is a full subcate-

gory of C. For example, the category of finite sets is a full subcategory of Set.

A category C is concrete if there exists a faithful functor F : C → SetV for some V . In this case, we may identify

each object a in C with the set F c and each arrow a
f

→ b in C with the mapping of sets F f : F a → F b. Exam-

ples of concrete categories include SetV , GrpV , and R-ModV .

7. Natural Transformations

Fix categories C = (O, A, I , ) and C′ = (O′, A′, I ′, ′) and functors F : C → C′ and G: C → C′. A transformation of

functors τ : F
⋅

→ G is a mapping τ : O → A′ that assigns to every object a in O an arrow τ a: F a → G a in A′.
Notice that for every object a in O, F maps a to F a, G maps a to G a, and the arrow τ a relates the two mappings.

We often write τ a instead of τ a. We call τ a the component of the transformation τ at a.

It is often useful to think of a transformation τ as a family of arrows {τ a}a ∈ O in C′ indexed by the objects of C. We

also write {τ a}a ∈ C , using a ∈ C to denote an object a of C.

We say that a transformation τ : F
⋅

→ G is natural if, for every arrow a
f

→ b in A, the diagram shown in Figure 3

commutes.

F a G a

F b G b

F f

τ b

τ a

G f

Figure 3: The commutative diagram for a natural transformation τ : F
⋅

→ G.

In this case we call τ a natural transformation of the functor F to the functor G. A natural transformation is also

called a morphism of functors. A natural transformation of contravariant functors is similar, but the directions of

F f and G f in the diagram are reversed.

Fix a natural transformation τ : F
⋅

→ G. If each arrow τ a is invertible in C′ (§ 5), then we say that τ is a natural

equivalence or natural isomorphism, and we write F ≅ G.

An equivalence between categories C and C′ is a pair of functors F : C → C′ and G: C′ → C such that G F ≅ IC

and F G ≅ IC′.

Fix a functor F : C → C′. The identity transformation F
⋅

→ F associated with F is the mapping a → 1F a. Notice

that we have F a
1F a→ F a as required for a transformation of functors, and the transformation is trivially natural.

Fix categories B and C. The functor category C B is defined as follows:

1. The objects are all functors F : B → C.

2. The arrows are all natural transformations τ : F
⋅

→ G of functors F : B → C and G: B → C.

3. For each functor F , the identity arrow 1F is the identity transformation associated with F .

4. For each composable pair of arrows (F
σ
→ G, G

τ
→ H), the composition is written τ ⋅ σ instead of τ σ or

τ σ . It is defined as the mapping a → τ a σ a, where the right-hand expression is a composition of arrows

F a → G a and G a → H a in C.
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Notice that in item 4 we have F a
τ a σ a→ H a, as required for the transformation of functors τ ⋅ σ : F

⋅
→ H . This trans-

formation is natural, and the composition is associative (proof omitted).

Let V be a set containing some categories, all the mappings defining covariant functors between those categories,

and all the mappings defining natural transformations between the functors. We can construct another category with

natural transformations as arrows, as follows:

1. The objects are all the categories (not the functors) in V .

2. The arrows B
τ

→ C are all natural transformations τ : F
⋅

→ G with F : B → C and G: B → C.

3. For each category C, the identity arrow 1C is the identity transformation associated with the identity functor

IC .

4. For each composable pair of arrows (B
σ
→ C, C

τ
→ D), with σ : Fσ

⋅
→ Gσ and τ : Fτ

⋅
→ Gτ , the composition

B
τ σ
→ D is the natural transformation τ σ : Fτ Fσ

⋅
→ Gτ Gσ given by the mapping a → Gτ σ a τ Fσ a.

Here the right-hand expression is the composition of arrows Fτ Fσ a → Gτ Fσ a and Gτ Fσ a → Gτ Gσ a

in D.

In item 4, the composition may also be defined as a → τ Gσ a Fτ σ a. The two definitions are equivalent, the

composition is a natural transformation, and the composition is associative (proof omitted).

The two ways of composing natural transformations satisfy the following interchange law (proof omitted):

(τ ′ ⋅ σ ′) (τ ⋅ σ ) = (τ ′ τ ) ⋅ (σ ′ σ ).

We may compose natural transformations with functors as follows. Let τ : F
⋅

→ G be a natural transformation of

functors F : C → D and G: C → D.

1. Fix a category B and a functor H : B → C. Write τ H to denote the composite transformation a → τ (H a).

Then (τ H) a = τ (H a) is an arrow from F (H a) = (F H) a to G (H a) = (G H) a, so τ H is a transforma-

tion from the composite functor F H to the composite functor G H . It is in fact a natural transformation,

because for any arrow a
f

→ b in B, we hav e

((G H) f ) ((τ H) a) = (G (H f )) (τ (H a))

= (τ (H b)) (F (H f )) (naturality of τ )

= ((τ H) b) ((F H) f ).

Therefore τ H is a natural transformation τ H : F H
⋅

→ G H .

2. Fix a category B and a functor H : D → B. Write H τ to denote the composite transformation a → H (τ a).

Then (H τ ) a = H (τ a) is an arrow from H (F a) = (H F) a to H (G a) = (H G) a, so H τ is a transforma-

tion from the composite functor H F to the composite functor H G. It is in fact a natural transformation,

because for any arrow a
f

→ b in C, we hav e

((H G) f ) ((H τ ) a) = (H (G f )) (H (τ a))

= H ((G f ) (τ a)) (definition of a functor )

= H ((τ b) (F f )) (naturality of τ )

= (H (τ b)) (H (F f )) (definition of a functor )

= ((H τ ) b) ((H F) f ).

Therefore H τ is a natural transformation H τ : H F
⋅

→ H G.

This form of composition will be useful when we discuss adjoint functors (§ 14).
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8. Duality and Opposite Categories

Duality: For any statement S about a category, the dual statement S* is the statement constructed by transforming S

as follows:

1. Replace each arrow a
f

→ b with b
f

→ a.

2. Replace each composition f g with g f .

3. Replace each property P defined by a statement T with the dual statement T *. If possible, replace T * with an

equivalent property P*.

As an example of step 3, suppose S refers to the domain of f , where f is the arrow a
f

→ b. In forming S*, we

replace “domain of f ” with its definition, i.e., “the object a in the arrow a
f

→ b.” Then we form the dual of the defi-

nition, i.e., “the object a in the arrow b
f

→ a.” Then we see that a is the codomain of f , so we replace “domain of

f ” in S with “codomain of f ” in S*. Other examples of dual properties P and P* are the following:

• The property of being a monic or epi arrow.

• The property of being a left or right inverse of an arrow.

• The property of being an initial or terminal object.

It is an easy exercise to verify that in each case, the definitions given in § 5 are dual to each other.

Duality has the property that for any statement S, S** = S. We consider a diagram (§ 3) to be a statement about a

category; the dual of a diagram has all its arrows and compositions reversed.

Fix a statement S and a sequence of statements {Si} proving that S is true. Then the sequence of statements {Si*} is

a proof that S* is true. This is called the duality principle in category theory: whenever we can prove a statement

S, we get the proof (and the truth) of the dual statement S* “for free.”

Opposite categories: Fix a category C. The opposite category of C, denoted Cop, is the unique category such that

for every statement S that is true about C, the dual statement S* is true about Cop. In particular, for every arrow

a
f

→ b in C, there is a corresponding arrow b
f

→ a in Cop; and for every composition g f in C, there is a corre-

sponding composition f g in Cop. Note that (Cop)op = C.

For each category C, we define the opposite functor opC : Cop ← C by the pair of maps taking every object a in C

to the object a in Cop and every arrow a
f

→ b in C to the arrow b
f

→ a in Cop. It is a contravariant functor. Note that

the composition opCop opC is equal to the identity functor IC .

Fix categories C and D and a contravariant functor F : D ← C.

1. We may write F = F IC = F opCop opC . Therefore F = G opC , where G: Cop → D is the covariant functor

F opCop .

2. We may write F = ID F = opDop opD F . Therefore F = opDop H , where H : C → Dop is the covariant functor

opD F .

Thus we may specify any contravariant functor F : D ← C by giving either a covariant functor G: Cop → D (with the

understanding that F = G opC ) or a covariant functor H : C → Dop (with the understanding that F = opDop H).

Note that a covariant functor F : C → D maps C to a subcategory of D, and a contravariant functor F : D ← C maps

C to a subcategory of Dop via the covariant functor H : C → Dop.

9. Universal Elements and Arrows

The tensor product: In this section, we will use the tensor product of modules as an example. We begin by restat-

ing the definition of the tensor product. For more information on tensor products, see my paper Definitions for Com-

mutative Algebra.

Fix a commutative ring R and R-modules A and A′. The tensor product A ⊗R A′ is the unique R-module equipped

with a “universal” bilinear map u: A × A′ → A ⊗R A′ such that for any R-module B and any bilinear map

f : A × A′ → B, there exists a unique module homomorphism g f : A ⊗R A′ → B with f = g f u. Figure 4 shows the

commutative diagram. This diagram exists in a category whose objects are R-modules and Cartesian products of R-

modules, and whose arrows are homomorphisms of R-modules and bilinear maps from Cartesian products of R-
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A × A′ A ⊗R A′

B

u

f g f

Figure 4: The commutative diagram for the tensor product of modules A and A′.

modules to R-modules.

We may restate the definition of the tensor product A ⊗R A′ in terms of a functor. Define the functor S: R-

Mod → Set as follows:

• The object function of S takes each R-module M to the set of bilinear maps from A × A′ to M .

• The arrow function of S takes each module homomorphism g: M → M ′ to the mapping of sets

S g: S M → S M ′ given by f → g f . Notice that g f is a bilinear map from A × A′ to M ′, as required.

Now we hav e u ∈ S(A ⊗R A′), f ∈ S B, and g f u = (S g f ) u. Here (S g f ) u means “apply the mapping

S g f : S (A ⊗ A′) → S B to the element u ∈ S(A ⊗R A′), yielding the element g f u ∈ S B.” Therefore we may

define the tensor product A ⊗R A to be the unique R-module such that, for a fixed bilinear map u ∈ S(A ⊗R A′),
any R-module B, and any bilinear map f ∈ S B, there exists a unique module homomorphism g f : A ⊗R A′ → B

with f = (S g f ) u.

Universal elements: The map u in the definition of the tensor product is an example of a universal element for a

functor to Set. The general definition is as follows. Fix a category C, a functor S: C → Set, and an object a in C.

An element u ∈ S a is a universal element of S a if, for every object b in C and every element f ∈ S b, there exists

an arrow a
g f

→ b in C with f = (S g f ) u. See Table 1.

General construction Tensor product A ⊗R A′
A category C The category R-Mod

A functor S: C → Set The functor S: R-Mod → Set taking each R-module M to the set of

bilinear maps A × A′ → M , and taking each R-module homomor-

phism g: M → M ′ to the function f → g f that takes each bilinear

map f : A × A′ → M to the bilinear map g f : A × A′ → M ′
An object a in C The tensor product A ⊗R A′
A universal element u ∈ S a The bilinear map u: A × A′ → A ⊗R A′ in the definition of the tensor

product

For every object b in C For every R-module B

For every f ∈ S b For every bilinear map f : A × A′ → B

An arrow a
g f

→ b in C An R-module homomorphism g f : A ⊗R A → B

f = (S g f ) u f = g f u

Table 1: Universal elements.

Universal elements as arrows: Given any set X and any element x ∈ X , we may represent x as an arrow in the cat-

egory Set as follows. Let * represent any set {e} containing one element e. Define x: * → X to be the map e → x.

This map is an arrow *
x

→ X in the category Set, and there is exactly one such arrow for each element x in X . The

arrow “picks out” an element x of X by mapping e to it. In this way, we may represent any element of X as an

arrow * → X . Another way to say this is that hom(*, X) ≅ X .

We may use this construction to restate the definition of a universal element. Fix a category C, a functor

S: C → Set, and an object a in C. Then an arrow *
u

→ S a in Set is a universal element of S a if, for every object b
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in C and every arrow *
f

→ S b in Set, there exists an arrow a
g f

→ b in C with f = (S g f ) u. Here (S g f ) u means

“compose the arrow *
u

→ S a with the arrow S a
S g f

→ S b, yielding an arrow * → S b.”

Figure 5 shows the diagram. Figure 6 shows the same diagram, specialized to the case of the tensor product. Both

diagrams exist in the category Set.

* S a

S b

u

f S(a
g f

→ b)

Figure 5: The commutative diagram for a universal element of S a, with set membership represented as an arrow.

* S(A ⊗R A′)

S B

* → u: A × A′ → A ⊗R A′

* → f : A × A′ → B S(g f : A ⊗R A′ → B)

Figure 6: Figure 5 specialized to the case of the tensor product.

Universal arrows: Now we can generalize the concept of a universal element, by replacing the category Set with

any category D. Fix categories C and D, a functor F : C → D, an object s in D (the “source object”), and an object

a in C. An arrow s
u

→ F a is a universal arrow from s to F a if, for every object b in C and every arrow s
f

→ F b

in D, there exists an arrow a
g f

→ b in C with f = (F g f ) u. Figure 7 shows the diagram, in the category D.

s F a

F b

u

f F(a
g f

→ b)

Figure 7: The commutative diagram for a universal arrow s
u

→ F a.

The definition of a universal element using arrows is a special case of a universal arrow, with D = Set and s = *. Ta-

ble 2 summarizes the three constructions discussed above (universal elements, universal elements as arrows, and uni-

versal arrows).

The dual construct: The dual construct of a universal arrow from s to F a is a universal arrow from F a to t. Fix

categories C and D, a functor F : C → D, an object t in D (the “target object”), and an object a in C. An arrow

F a
u

→ t is a universal arrow from F a to t if, for every object b in C and every arrow F b
f

→ t, there exists an

arrow b
g f

→ a in C with f = u (F g f ). Figure 8 shows the diagram. Table 3 summarizes the dual universal con-

structs.
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Universal Elements Universal Elements as Arrows Universal Arrows

A category C A category C Categories C and D

A functor S: C → Set A functor S: C → Set A functor F : C → D

— The object * in Set An object s in D

An object a in C An object a in C An object a in C

A universal element u ∈ S a A universal arrow *
u

→ S a A universal arrow s
u

→ F a

For every object b in C For every object b in C For every object b in C

For every f ∈ S b For every arrow *
f

→ S b For every arrow s
f

→ F b

An arrow a
g f

→ b in C An arrow a
g f

→ b in C An arrow a
g f

→ b in C

f = (S g f ) u f = (S g f ) u f = (F g f ) u

Table 2: Universal elements and arrows.

t F a

F b

u

f F(b
g f

→ a)

Figure 8: The commutative diagram for a universal arrow F a
u

→ t.

Universal Arrows to F a Universal Arrows from F a

Categories C and D Categories C and D

A functor F : C → D A functor F : C → D

An object s in D An object t in D

An object a in C An object a in C

A universal arrow s
u

→ F a A universal arrow F a
u

→ t

For every object b in C For every object b in C

For every arrow s
f

→ F b For every arrow F b
f

→ t

An arrow a
g f

→ b in C An arrow b
g f

→ a in C

f = (F g f ) u f = u (F g f )

Table 3: Dual universal constructs.

Comma categories: A universal arrow is an initial object (§ 5) in a category called a comma category. The defini-

tion of a comma category is as follows. Let B, C, and D be categories, and let F : B → D and G: C → D be func-

tors. The comma category (F , G) or (F ↓ G) consists of the following elements:

1. The objects are arrows F b
f

→ G c with b an object of B and c an object of C. This notation means that there

is a distinct object for each triple (b, c, F b
f

→ G c).

2. The arrows (F b
f

→ G c)
g

→ (F b′
f ′

→ G c′) are pairs of arrows g = (b
g1→ b′, c

g2→ c′) in B × C such that the

diagram shown in Figure 9 commutes.

3. The identity arrow 1
F b

f
→G c

is (1b, 1c).
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F b G c

F b′ G c′

F g1

f ′

f

G g2

Figure 9: The commutative diagram for an arrow (g1, g2) in the category (F ↓ G).

4. Composition of arrows is given by (h1, h2) (g1, g2) = (h1 g1, h2 g2).

Let B be the category with one object o, and let s: B → D be the functor taking the object o in B to the object s in

D. Then Figure 10 shows the commutative diagram in Figure 9 applied to an arrow (s o
u

→ G c)
(1o,g f )

→ (s o
f

→ G c′)
in the category (s ↓ G).

s o = s G c

s o = s G c′

s 1o = 1s

f

u

G g f

Figure 10: The commutative diagram for an arrow (1o, g f ) in the category (s ↓ G).

Unifying the occurrences of s in Figure 10 and renaming G to F , c to a, and c′ to b yields the diagram shown in

Figure 7. Therefore, with reference to Figure 7, we have the following:

1. The arrow s
u

→ F a is an object in the category (s ↓ F).

2. s
u

→ F a is a universal arrow if and only if for each object s
f

→ F b in (s ↓ F), there exists a unique arrow

(s
u

→ F a)
(1o,g f )

→ (s
f

→ F b) in (s ↓ F), i.e., s
u

→ F a is an initial object in (s ↓ F).

Uniqueness of universal arrows: In general, an initial object is unique up to isomorphism (§ 5). Therefore, for any

functor F : C → D, a  universal arrow s
u

→ F a is unique up to isomorphism in (s ↓ F). Since an arrow in (s ↓ F) is

a pair of arrows (1o, f ), the object a is also unique up to isomorphism in C.

10. Limits and Colimits

In this section we define limits and colimits in category theory. Limits and colimits are examples of universal arrows

(§ 9). We must deal with the following notational inconvenience:

1. Limits in category theory correspond to inverse limits in abstract algebra.

2. Colimits in category theory correspond to direct limits in abstract algebra.

This notation is backwards, but standard. It seems to be motivated by the fact that a product in category theory

(§ 11) is a special case of a limit in category theory, and a product in category theory does correspond to a product in

set theory or abstract algebra.

10.1. Limits

A limit in category theory generalizes the idea of an inverse limit in algebra.

Inverse limits of modules: We begin by recalling the definition of an inverse limit of modules in commutative alge-

bra. For more information on inverse limits, see my paper Definitions for Commutative Algebra.

Fix a nonempty partially ordered set I , a ring R, and a family S = {Ai}i ∈ I of R-modules. S is an inverse system of

modules over I (inverse system for short) if there exist homomorphisms fij : A j → Ai for all i ≤ j such that

1. For all i ∈ I , fii is the identity map on Ai .
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2. For all i ≤ j ≤ k, fik = fij f jk .

Fix an inverse system S. The inverse limit of S, written
←

lim S, consists of all elements {ai}i ∈ I of the direct prod-

uct
i ∈ I
Π Ai such that for all i ≤ j, ai = fij a j . The inverse limit is a submodule of the direct product.

For each i ∈ I , let υ i: ←
lim S → Ai be the R-module homomorphism given by υ i({a j} j ∈ I ) = ai . Then we have the

following:

1. For any i and j in I with i ≤ j, υ i = fij υ j . Figure 11 shows the commutative diagram.

←
lim S

Ai A jfij

υ i υ j

Figure 11: The commutative diagram for an inverse limit.

2. The inverse limit is universal among R-modules with property (1), in the sense that if B is any R-module

equipped with a family of homomorphisms τ = {τ i: B → Ai} i ∈ I with τ i = fij τ j for all i ≤ j, then there is a

unique homomorphism gτ : B →
←

lim S with τ i = υ i gτ for all i. This homomorphism is given by

gτ b = {τ i b}i ∈ I .

That is, gτ b is the element of the direct product
i ∈ I
Π Ai whose component at each i is τ i b.

Inverse limits as universal arrows: We now express the inverse limit of a family modules as a universal arrow from

a functor (§ 9).

First we translate each of the elements in the definition of an inverse limit into category theory. In place of a

directed set I , we use a category I with the following properties:

1. The arrows in I provide the partial order relation. That is, there is at most one arrow between any pair of

objects i and j in I , and i ≤ j if and only if there is an arrow i → j.

2. The arrows must provide a valid partial order. The rules for composition of arrows provide reflexivity and

transitivity, so we need to check only antisymmetry. (We could also use a preorder, which is a partial order

without antisymmetry.)

In place of an inverse system of modules, we use a functor S: Iop → R-Mod. Each module Ai is the image S i of

the corresponding object i in Iop. For all i ≤ j, each homomorphism fij : A j → Ai is the image S( j → i) of the cor-

responding arrow in Iop. By the composition rules for functors, these arrows satisfy the definition of an inverse sys-

tem.

Next we go through the required elements for a universal arrow from a functor (see Table 3).

1. The category C is R-Mod.

2. The category D is R-ModIop

, the category of functors from Iop to R-Mod. Recall that an arrow in this cate-

gory is a natural transformation (§ 7).

3. The functor F : C → D is the diagonal functor ∆ defined as follows:

a. The object function of ∆ takes each module B to a functor ∆ B: Iop → R-Mod defined by (∆ B) i = B

and (∆ B)( j → i) = 1B for all i and j in Iop.

b. The arrow function of ∆ takes a homomorphism f : B → B′ to the natural transformation δ : ∆ B
⋅

→ ∆ B′
given by δ i = f for all i.

4. The object t in D is the functor S: Iop → R-Mod defined above.

5. The object a in C is the inverse limit L =
←

lim S.
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6. An arrow F a
u

→ t is a natural transformation υ : ∆ L
⋅

→ S, i.e., a family of arrows {(∆ L) i
υ i→ S i} i ∈ I such

that the diagram shown in Figure 12 commutes for all i ≤ j. Unifying the instances of L =
←

lim S yields the

commutative diagram shown in Figure 11.

(∆ L) j = L S j = A j

(∆ L) i = L S i = Ai

(∆ L)( j → i) = 1L

υ i

υ j

S( j → i) = fij

Figure 12: The commutative diagram for a natural transformation υ : ∆ L
⋅

→ S.

7. An object b in C is any R-module B.

8. An arrow F b
f

→ t is a natural transformation τ : ∆ B
⋅

→ S, i.e., a family of homomorphisms {τ i: B → Ai} i ∈ I

with τ i = fij τ j for all i ≤ j,

9. An arrow b
g f

→ a is a homomorphism gτ : B → L.

10. The identity f = u (F g f ) means τ = υ (∆ gτ ). That means τ i = υ i gτ for all i.

Items 1 through 10 satisfy the definition of a universal arrow. Item 6 satisfies item 1 in the definition of an inverse

limit. Item 10 satisfies item 2 in the definition of an inverse limit. Therefore, items 1 through 10 show that an

inverse limit L =
←

lim S is equivalent to universal arrow ∆ L
υ

→ S.

The general definition of a limit: The expression of an inverse limit as a universal arrow is a special case of a limit

in category theory. Here is the general definition. Fix categories I and C and a functor S: I → C. We may think of

I as an index category, and S as a system of objects S i = ci in C. Define the diagonal functor ∆: C → C I as fol-

lows:

1. ∆ c is the functor given by (∆ c) i = c and (∆ c)(i → j) = 1c.

2. ∆(c
f

→ c′) is the natural transformation δ : ∆ c
⋅

→ ∆ c′ given by δ i = f for all i.

A limit of S is an object L = Lim S in C together with a universal arrow ∆ L
υ

→ S. This arrow is a natural transfor-

mation, i.e., a family of arrows {((∆ L) i = Lim S)
υ i→ S i} i ∈ I such that all diagrams of the form shown in Fig-

ure 13 commute for all arrows S(i → j).

Lim S

S i S j

υ i υ j

Figure 13: The commutative diagram for the cone from Lim S.

The object L = Lim S is called the limit object of the limit. The limit object, if it exists, is unique up to isomor-

phism. This is a general property of the object a in a universal arrow (§ 9). The natural transformation ∆ L
υ

→ S is

called a cone. The limit object is called the vertex of the cone. The functor S is called the base of the cone. In the

case of a limit, we say that the cone goes from the vertex to the base.

The property of being a universal arrow says that for any cone c
τ

→ S from vertex c in C, as shown in Figure 14,

there exists a unique arrow c
gτ→ Lim S in C such that the diagram shown in Figure 15 commutes for all i.

Table 4 summarizes the definition of a limit Lim S in terms of a universal arrow from a functor.
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c

S i S j

τ i τ j

Figure 14: The commutative diagram for a cone from c.

c Lim S

S i

gτ

τ i υ i

Figure 15: The commutative diagram for the arrow c
gτ→ Lim S.

A Universal Arrow from a Functor The Limit Lim S

A category C A category C

A category D The category C I , where I is an index category

A functor F : C → D The diagonal functor ∆: C → C I , where for all c, i, and j,

(∆ c) i = c, (∆ c)(i → j) = 1c, and (∆(c
f

→ c′)) i = δ i = f

An object t in D A functor S: I → C providing a family of objects S i = ci in C

indexed by I

An object a in C The limit L = Lim S

A universal arrow F a
u

→ t A natural transformation υ : ∆ L
⋅

→ S providing a cone from the

vertex Lim S to the base S

For every object b in C For every object c in C

For every arrow F b
f

→ t For every natural transformation τ : ∆ c
⋅

→ S providing a cone

from the vertex c to the to the base S

An arrow b
g f

→ a in C An arrow c
gτ→ Lim S

f = u (F g f ) τ = υ (∆ gτ ), i.e., τ i = υ i gτ for all i

Table 4: A limit Lim S as a universal arrow from a functor.

10.2. Colimits

A colimit in category theory is the dual construct of a limit (§ 10.1). It generalizes the idea of a direct limit in alge-

bra.

Direct limits of modules: We recall the definition of a direct limit of modules in commutative algebra. For more

information on direct limits, see my paper Definitions for Commutative Algebra.

Recall that a directed set is a nonempty partially ordered set I in which every pair of elements of I has an upper

bound, i.e., for any two elements i and j in I there exists an element k in I with i ≤ k and j ≤ k according to the par-

tial order on I .

Fix a directed set I , a ring R, and a family S = {Ai}i ∈ I of R-modules. S is a direct system of modules over I

(direct system for short) if there exist homomorphisms fij : Ai → A j for all i ≤ j such that

1. For all i ∈ I , fii is the identity map on Bi .

2. For all i ≤ j ≤ k, fik = f jk fij .
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Fix a direct system S. The direct limit of S, written
→

lim S, is the disjoint union {(a, i): a ∈ Ai}i ∈ I of the modules

Ai , subject to the equivalence relation (a, i) ∼ ( fij a, j) for all i ≤ j and all a ∈ Ai . In particular, if a ∈ Ai and

a′ ∈ A j , then (a, i) ∼ (a′, j) if and only if there exists k with i ≤ k and j ≤ k such that fik a = f jk a′. The direct

limit is an R-module.

For each i ∈ I , let υ i: Ai →
→

lim S be the R-module homomorphism that takes each a ∈ Ai to the equivalence class

[(a, i)] of (a, i) in
→

lim S. Then we have the following:

1. For any i and j in I with i ≤ j, υ i = υ j fij . Figure 16 shows the commutative diagram.

→
lim S

Ai A jfij

υ i υ j

Figure 16: The commutative diagram for a direct limit.

2. The direct limit is universal among R-modules with property (1), in the sense that if B is any R-module

equipped with a family of homomorphisms τ = {τ i: Ai → B}i ∈ I with τ i = τ j fij for all i ≤ j, then there is a

unique homomorphism gτ :
→

lim S → B with τ i = gτ υ i for all i. This homomorphism is given by

gτ [(a, i)] = τ i a,

where [(a, i)] is the equivalence class in
→

lim S represented by the element (a, i) in the disjoint union. This

homomorphism is well-defined, because if [(a′, j)] is any other representative of the same equivalence class,

then there exists k such that fik a = f jk a′, so we hav e

gτ [(a, i)] = τ i a = (τ k fik) a = τ k( fik a) = gτ [( fik a, k)] = gτ [( f jk a′, k)]

= τ k( f jk a′) = (τ k f jk) a′ = τ j a′ = gτ [(a′, j)].

Direct limits as universal arrows: We now express the direct limit of a family modules as a universal arrow to a

functor (§ 9).

In place of a directed set I , we use a category I with the following properties:

1. The arrows of I form a partial order as discussed in § 10.1.

2. The arrows provide an upper bound, i.e., for any objects i and j, there exists an object k with arrows i → k

and j → k.

In place of a direct system of modules, we use a functor S: I → R-Mod. Each module Ai is the image S i of the

corresponding object i in I . For all i ≤ j, each homomorphism fij : Ai → A j is the image S(i → j) of the corre-

sponding arrow in I . By the composition rules for functors, these arrows satisfy the definition of a direct system.

Next we go through the required elements for a universal arrow to a functor (see Table 3).

1. The category C is R-Mod.

2. The category D is R-ModI , the category of functors from I to R-Mod. Recall that an arrow in this category is

a natural transformation (§ 7).

3. The functor F : C → D is the diagonal functor ∆ defined as follows:

a. The object function of ∆ takes each module B to a functor ∆ B: I → R-Mod defined by (∆ B) i = B and

(∆ B)(i → j) = 1B for all i and j in I .

b. The arrow function of ∆ takes a homomorphism f : B → B′ to the natural transformation δ : ∆ B
⋅

→ ∆ B′
given by δ i = f for all i.

4. The object s in D is the functor S: I → R-Mod defined above.
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5. The object a in C is the direct limit L =
→

lim S.

6. An arrow s
u

→ F a is a natural transformation υ : S
⋅

→ ∆ L, i.e., a family of arrows {S i
υ i→ (∆ L)} i ∈ I such

that the diagram shown in Figure 17 commutes for all i ≤ j. Unifying the instances of L =
→

lim S yields the

commutative diagram shown in Figure 16.

S i = Ai (∆ L) i = L

S j = A j (∆ L) j = L

υ i

υ j

S(i → j) = fij (∆ L)(i → j) = 1L

Figure 17: The commutative diagram for a natural transformation υ : S
⋅

→ ∆ L.

7. An object b in C is any R-module B.

8. An arrow s
f

→ F b is a natural transformation τ : S
⋅

→ ∆ B, i.e., a family of homomorphisms {τ i: Ai → B} i ∈ I

with τ i = τ j fij for all i ≤ j,

9. An arrow a
g f

→ b is a homomorphism gτ : L → B.

10. The identity f = (F g f ) υ means τ = (∆ gτ ) υ . That means τ i = gτ υ i for all i.

Items 1 through 10 satisfy the definition of a universal arrow. Item 6 satisfies item 1 in the definition of a direct

limit. Item 10 satisfies item 2 in the definition of a direct limit. Therefore, items 1 through 10 show that a direct

limit L =
→

lim S is equivalent to universal arrow S
υ

→ ∆ L.

The general definition of a colimit: The expression of a direct limit as a universal arrow is a special case of a col-

imit in category theory. Here is the general definition. Fix categories I and C and a functor S: I → C. We may

think of I as an index category, and S as a system of objects S i = ci in C. Define the diagonal functor ∆: C → C I as

in the definition of a limit (§ 10.1).

A colimit of S is an object L = Colim S in C together with a universal arrow S
υ

→ ∆ L. This arrow is a natural

transformation, i.e., a family of arrows {S i
υ i→ ((∆ L) i = Colim S)} i ∈ I such that all diagrams of the form shown in

Figure 18 commute for all arrows S(i → j).

Colim S

S i S j

υ i υ j

Figure 18: The commutative diagram for the cone to Colim S.

The object L = Colim S is called the colimit object of the colimit. The colimit object, if it exists, is unique up to

isomorphism. This is a general property of the object a in a universal arrow (§ 9). As in the case of a limit (§ 10.1),

the natural transformation S
υ

→ ∆ L is called a cone. The colimit object is called the vertex of the cone. The func-

tor S is called the base of the cone. In the case of a colimit, we say that the cone goes from the base to the vertex.

The property of being a universal arrow says that for any cone S
τ

→ c to vertex c in C, as shown in Figure 19, there

exists a unique arrow Colim S
gτ→ c in C such that the diagram shown in Figure 20 commutes for all i.

Table 5 summarizes the definition of a colimit Colim S in terms of a universal arrow to a functor.
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c

S i S j

τ i τ j

Figure 19: The commutative diagram for a cone to c.

c Colim S

S i

gτ

τ i υ i

Figure 20: The commutative diagram for the arrow Colim S
gτ→ c.

A Universal Arrow to a Functor The Colimit Colim S

A category C A category C

A category D The category C I , where I is an index category

A functor F : C → D The diagonal functor ∆: C → C I , where for all c, i, and j,

(∆ c) i = c, (∆ c)(i → j) = 1c, and (∆(c
f

→ c′)) i = δ i = f

An object s in D A functor S: I → C providing a family of objects S i = ci in C

indexed by I

An object a in C The colimit L = Colim S

A universal arrow s
u

→ F a A natural transformation υ : S
⋅

→ ∆ L providing a cone from the

base S to the vertex Colim S

For every object b in C For every object c in C

For every arrow s
f

→ F b For every natural transformation S
⋅

→ τ : ∆ providing a cone from

the base S to the vertex c

An arrow a
g f

→ b in C An arrow Colim S
gτ→ c

f = (F g f ) u τ = (∆ gτ ) υ , i.e., τ i = gτ υ i for all i

Table 5: A colimit Colim S as a universal arrow to a functor.

10.3. Existence of Limits and Colimits

Given categories I and C and a functor S: I → C, the limit Lim S may or may not exist, and similarly for the colimit

Colim S. When a limit exists, we may demonstrate its existence by explicit construction, as we have done in the

preceding sections.

We say a limit or colimit is small if the category I is small. A category C is complete if all small limits exist in C,

cocomplete if all small colimits exist in C, and bicomplete if it is complete and cocomplete. The categories Set and

R-Mod are bicomplete.

11. Products and Coproducts

In this section we define products and coproducts in category theory. Products and coproducts are important special

cases of limits (§ 10.1) and colimits (§ 10.2), respectively. As with limits and colimits, a given product or coproduct

may or may not exist in a given category. If the product or coproduct exists, we may demonstrate its existence by

explicit construction.
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11.1. Products

A product in category theory generalizes the idea of a product in set theory or algebra. A product is a limit Lim S

(§ 10.1) in which the index category I is a discrete category (§ 2). In other words, the only arrows in I are the iden-

tity arrows 1i . We denote the product
i ∈ I
Π S i or

i ∈ I
Π ai , where S i = ai for all i. We now giv e some examples of

products.

The Cartesian product of sets: Let I be a set, and let S = {Ai}i ∈ I be a family of sets indexed by I . The Cartesian

product of S, written
i ∈ I
× Ai , is the set of all families of elements {ai}i ∈ I with ai ∈ Ai for all i. When

I = {1, . . . , n}, we may represent each element of the Cartesian product as an ordered tuple of elements. For exam-

ple, in the case I = {1, 2}, the Cartesian product A1 × A2 is the set of all ordered pairs (a1, a2) with a1 ∈ A1 and

a2 ∈ A2.

Let P =
i ∈ I
× Ai be the Cartesian product of S. For each i ∈ I , let υ i: P → Ai be the map given by υ i({a j} j ∈ I ) = ai .

υ i is called the ith projection map, because it projects an element of the Cartesian product onto Ai . The family of

maps υ = {υ i: P → Ai}i ∈ I is universal, in the sense that if B is any set equipped with a family of maps τ =
{τ i: B → Ai} i ∈ I , then there is a unique map gτ : B → P with τ i = υ i gτ for all i. This map is given by

gτ b = {τ i b}i ∈ I .

That is, gτ b is the element of the Cartesian product
i ∈ I
× Ai whose component at each i is τ i b.

The Cartesian product is a product in the category Set. Let I be a discrete category, and fix a functor S: I → Set.

Then S represents a family of sets {Ai}i ∈ I , where Ai = S i. It is evident from the definitions that
i ∈ I
× Ai =

←
lim S.

Indeed, there are no arrows i → j in I when i ≠ j, so there are no diagrams of the form shown in Figures 13 and 14.

There are just maps υ i and τ i satisfying the diagram shown in Figure 15. This diagram establishes the universal

property of the Cartesian product stated above. Since the object satisfying the universal property is unique up to iso-

morphism, the limit is the Cartesian product.

The direct product of modules: Fix a commutative ring R, let I be a set, and let S = {Ai}i ∈ I be a family of R-

modules indexed by I . The direct product of S, written
i ∈ I
Π Ai , is the Cartesian product

i ∈ I
× Ai with the R-module

structure given by

{ai}i ∈ I + {a′i}i ∈ I = {ai + a′i}i ∈ I

and

r {ai}i ∈ I = {rai}i ∈ I .

The direct product is a limit in the category R-Mod. Indeed, the direct product is just the inverse limit (§ 10.1) in

the case when the only maps fij are the identity maps fii , and we have already shown that the inverse limit is a limit.

The product of categories: We may form the product of a family of categories in Cat. Let I be a discrete category,

let S: I → Cat be a functor, and let Ai = S i for all i. We construct the product category P =
i ∈ I
Π Ai as follows:

1. The objects of P are families a = {ai}i ∈ I , with ai an object of Ai for all i.

2. The arrows {ai}i ∈ I

f
→ {a′i}i ∈ I of P are families f = {ai

fi→ a′i}i ∈ I , with each fi an arrow in Ai .

3. Composition of arrows in P is given by {a′i
gi→ a′′i}i ∈ I { ai

fi→ a′i }i ∈ I = { ai

gi fi→ a′′i }i ∈ I .

4. The arrows υ i: P → Ai are functors defined by υ i({a j} j ∈ I ) = ai and υ i({ f j} j ∈ I ) = fi .

5. For any category B and family of arrows {τ i: B → Ai}i ∈ I , the arrow gτ : B → P is the functor defined by

gτ b = {τ i b}i ∈ I and gτ f = {τ i f }i ∈ I .

It is straightforward to check that this definition satisfies the requirements for a product.

We often write the product of two categories A and B as A × B. Similarly, we write the elements and arrows as

ordered pairs (a, b) and ( f , g). In this notation, we have ( f ′, g′) ( f , g) = ( f ′ f , g′ g), υ1( f , g) = f , and

υ2( f , g) = g.
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A functor F : A × B → C from a product of two categories is called a bifunctor. We may think of a bifunctor

F : A × B → C as a functor F(−, −) with two arguments, one from A and one from B. Each object b in B yields a

functor F(−, b): A → C. The object function of this functor is a → F(a, b), and the arrow function is

f → F( f , 1b). Similarly, each object a in A yields a functor F(a, −): B → C.

An example is the functor homC (−, −) = C(−, −): Cop × C → SetV defined by (a, b) → C(a, b) and ( f , g) → C( f , g).

We hav e already discussed the functors C(−, b) and C(a, −) in § 6.

Fix categories A, B, and C and functors F : A → C and B → C. The product of the functors F and G, written

F × G, is the bifunctor from A × B to C given by (F × G) (a, b) = (F a, G b) and (F × G) ( f , g) = (F f , G g).

Fix bifunctors F : A × B → C and G: A × B → C and a transformation τ, not necessarily natural, from F to G. That

means τ is a family of arrows {F(a, b)
τ (a,b)

→ G(a, b)} (a,b) ∈ A×B, not necessarily satisfying the commutative diagram

shown in Figure 3. For each object b in B, τ yields a transformation τ (−,b): F(−, b) → G(−, b) whose component at

each a in A is τ (a,b). Similarly, for each object a in A, τ yields a transformation τ (a,−): F(a, −) → G(a, −) whose

component at each b in B is τ (a,b). If τ (−,b) is a natural transformation for all objects b in B, then we say that the

transformation τ is natural in a. Similarly, if τ (a,−) is a natural transformation for all objects a in A, then we say

that τ is natural in b. τ is a natural transformation of bifunctors if and only if it is natural in a and b (proof omit-

ted).

11.2. Coproducts

The coproduct is the dual construction to the product. It is a colimit (§ 10.2) in which the index category I is a dis-

crete category. We denote the coproduct
i ∈ I
⊕ S i or

i ∈ I
⊕ Ai , where S i = Ai for all i. We now giv e some examples of

coproducts.

The disjoint union of sets: Let I be a set, and let S = {Ai}i ∈ I be a family of sets indexed by I . The disjoint union

of S, written
i ∈ I
∪+ Ai , is the set

i ∈ I
∪ (Ai × {i}) consisting of all pairs (a, i) such that a ∈ Ai . The union is “disjoint” in

the sense that when the sets Ai share elements, each Ai contributes a separate copy of each of its elements. For

example, let I = {1, 2}, A1 = Z, and A2 = Z. Then the union Z ∪ Z contains one copy of the element 3, but the dis-

joint union Z ∪+ Z contains two copies (3, 1) and (3, 2).

Let U =
i ∈ I
∪+ Ai be the disjoint union of S. For each i ∈ I , let υ i: Ai → U be the map given by υ i a = (a, i). υ i is

called the ith injection map, because it injects an element of Ai into the disjoint union. The family of maps

υ = {υ i: Ai → U}i ∈ I is universal, in the sense that if B is any set equipped with a family of maps τ =
{τ i: Ai → B} i ∈ I , then there is a unique map gτ :U → B with τ i = gτ υ i for all i. This map is given by

gτ (a, i) = τ i a.

The disjoint union is a coproduct in the category Set. Let I be a discrete category, and fix a functor S: I → Set. By

an argument similar to the one that we made for the Cartesian product (§ 11.1), the disjoint union
i ∈ I
∪+ Ai is the col-

imit Colim S in Set.

The direct sum of modules: Fix a commutative ring R, let I be a set, and let S = {Ai}i ∈ I be a family of R-modules

indexed by I . The direct sum of S, written
i ∈ I
⊕ Ai , is the submodule of the direct product

i ∈ I
Π Ai consisting of all

families {ai}i ∈ I such that all but finitely many of the elements ai are zero. Equivalently,
i ∈ I
⊕ Ai is the R-module

generated by the disjoint union
i ∈ I
∪+ Ai , i.e., the set of all formal finite sums

n

j=1
Σ(a j , i j) with each a j ∈ Ai j

, modulo the

relation that two sums s1 and s2 are equivalent if each can be put into a common form s3 by reordering terms and

transforming pairs of terms (a, i) + (a′, i) into (a + a′, i). Note that if I is finite, then
i ∈ I
⊕ Ai =

i ∈ I
Π Ai .

The direct sum D =
i ∈ I
⊕ Ai is a colimit in the category R-Mod. For each i, let υ i: Ai → D be the R-module homo-

morphism that takes a ∈ Ai to the element {a j} j ∈ I in the direct sum such that ai = a and a j = 0 for j ≠ i. Equiva-

lently, υ i a is the formal finite sum consisting of the single term (a, i). For any module B and family of R-module

homomorphisms {τ i: Ai → B}i ∈ I , let map gτ : D → B be the R-module homomorphism given by

gτ {ai}i ∈ I =
i ∈ I
Σ τ i ai .
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This map is well-defined, because all but finitely many of the elements ai are zero, so the sum on the right-hand side

has finitely many nonzero terms. Equivalently, using the definition of the direct sum as a formal finite sum, we can

write

gτ

n

j=1
Σ(a j , i j) =

n

j=1
Σ τ i j

a j .

It is a straightforward exercise to show that, with these homomorphisms, the direct sum
i ∈ I
⊕ Ai is the colimit Colim S

in the category R-Mod, where S i = Ai . Note that the direct sum is not a direct limit, because the discrete category I

is not a directed set (it is not true that every pair of elements in I has an upper bound).

The coproduct of categories: We may form the coproduct of a family of categories in Cat. Let I be a discrete cate-

gory, let S: I → Cat be a functor, and let Ai = S i for all i. We construct the coproduct category C =
i ∈ I
⊕ Ai as fol-

lows:

1. The objects of C are all pairs (a, i), where i ∈ I and a is an object of Ai .

2. The arrows (a, i) → (b, i) of C are all pairs (a
f

→ b, i), where i ∈ I and a
f

→ b is an arrow of Ai . There are no

arrows (a, i) → (b, j) when i ≠ j.

3. The identity arrow 1(a,i) is (1a, i).

4. Composition of arrows in C is given by {  (b
g

→ c, i) } { (a
f

→ b, i) } = { (a
g f
→ c, i) }.

5. The arrows υ i: Ai → C are functors defined by υ i a = (a, i) and υ i f = ( f , i).

6. For any category B and family of arrows {τ i: Ai → B}i ∈ I , the arrow gτ : C → B is the functor defined by

gτ (a, i) = τ i a and gτ ( f , i) = τ i f .

It is straightforward to check that this definition satisfies the requirements for a coproduct.

12. More Examples of Universal Arrows and Elements

Having discussed limits and colimits (§ 10) and products and coproducts (§ 11), we now discuss some more exam-

ples of universal arrows and elements (§ 9).

Free categories: A graph is a partially specified category: it has objects and arrows, but no identity arrows or com-

position of arrows. More precisely, a graph is a pair G = (O, A), where O is a set of objects and A is a set of arrows

a
f

→ b, with a and b in O. A graph is also called a diagram scheme.

A morphism of graphs is a covariant functor (§ 6), minus the requirements about mapping identity arrows and com-

posite arrows. More precisely, if G = (O, A) and G′ = (O′, A′), then a morphism M : G → G′ is a pair of maps

M : O → O′ and M : A → A′ such that for all arrows a
f

→ b in A, there is a corresponding arrow M a
M f
→ M b in A′.

Let V be a set. GrphV is the category whose objects are all graphs G = (O, A) with O and A in V and whose arrows

are all morphisms between such graphs. When V = U , we write Grph to denote the category of all small graphs.

Every category C = (O, A, I , ) has an underlying graph GC = (O, A). Fix categories C = (O, A, I , ) and

C′ = (O′, A′, I ′, ′). Every functor F : C → C′ is also a morphism MF : GC → GC′. The forgetful functor

U : CatV → GrphV takes each category C to U C = GC and each functor F to U F = MF .

Fix a graph G = (O, A). The free category generated by G is the category CG = (O′, A′, I , ) defined as follows:

1. O′ = O.

2. A′ is the set of chains a0

f1→ a1

f2→ ⋅⋅⋅
fn→ an of zero or more arrows in A. Every such chain of arrows in A is an

arrow a0 → an in A′. In particular, every arrow in A is a chain a
f

→ b, so A is included in A′.
3. For each object a in O, 1a is the chain of zero arrows with a0 = a.

4. Composition works by concatenating composable chains, i.e., the composition of a
f

→ b and b
g

→ c is

g f = a
f

→ b
g

→ c.
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If G is an object of GrphV , then CG is an object of CatV .

Fix a graph G = (O, A) in GrphV , and let CG = (O, A′, I , ) be the free category generated by G. Then

U CG = (O, A′), where U is the forgetful functor described above. Let u: G → U CG be the morphism of graphs

given by the identity map O → O and the inclusion map A → A′. Then u is a universal arrow: for any category B

and morphism f : G → U B, there exists a unique functor g f :U CG → U B such that f = U g f u (proof omitted).

Quotient categories: Fix a category C = (O, A, I , ). A congruence on C is an equivalence relation ∼ on A such

that for every pair of arrows ( f , f ′) with f ∼ f ′, and for every pair of arrows (g, h) such that that the composition

h f  g is defined, h f ′ g is defined and h f  g ∼ h f ′ g. In particular, if f ∼ f ′, then f and f ′ have the same domain

and the same codomain, because we must have a
1a→ a

f
→ b

1b→ b ∼ a
1a→ a

f ′
→ b

1b→ b.

Fix a congruence ∼ on C. For each f ∈ A, let [ f ] ∈ A/∼ denote the equivalence class of f modulo ∼. The quotient

category C/∼ is (O, A/∼, I ′, ′), where I ′ is the map a → [1a], and ′ is defined by [g] [ f ] = [g f ]. The definition

of a congruence makes the composition ′ well-defined.

Let Q: C → C/∼ be the functor defined by the maps a → a and f → [ f ]. For any functor F : C → B, we say that F

respects the congruence ∼ if F f = F f ′ whenever f ∼ f ′. For any such functor F , there exists a unique functor

GF : C/∼ → B such that F = GF Q. In other words, Q is a universal element for the set of functors from C to C/∼
that respect ∼ (proof omitted).

Po wers and copowers: Consider a product
i ∈ I
Π ai in a category C (§ 11.1). A cone from a vertex c to the base

{ai}i ∈ I is a family of arrows {c
τ i→ ai}i ∈ I . (There are no cross arrows, because I is discrete.) The map

{τ i}i ∈ I → gτ is a bijection
i ∈ I
Π homC (c, ai) ≅ homC (c,

i ∈ I
Π ai). We may interpret each side of this bijection as a

bifunctor from C ×
i ∈ I
Π ai to SetV . Then the bijection is a transformation of these functors, and the transformation is

natural in c (proof omitted). When the factors in a product are all equal (ai = a for all i), the product
i ∈ I
Π ai =

i ∈ I
Π a

is called a power and written aI . With this notation, the bijection becomes homC (c, a)I ≅ homC (c, aI ). The power

homC (c, a)I in the category SetV represents the set of all functions from I to homC .

The dual concept of a power is called a copower. Consider a coproduct
i ∈ I
⊕ ai in a category C (§ 11.2). A cone

from the base {ai}i ∈ I to a vertex c is a family of arrows {ai

τ i→ c}i ∈ I . The map gτ → {τ i}i ∈ I is a bijection

homC (
i ∈ I
⊕ ai , c) ≅

i ∈ I
Π homC (ai , c). This bijection is a transformation of functors from

i ∈ I
Π ai × C to SetV , natural in

c (proof omitted). When the factors in a coproduct are all equal (ai = a for all i), the coproduct
i ∈ I
⊕ ai =

i ∈ I
⊕ a is

called a copower and written I ⋅ a, so the bijection becomes homC (I ⋅ a, c) ≅ homC (a, c)I .

Kernels and cokernels: Kernels and cokernels in category theory generalize the corresponding concepts in algebra.

First we review the algebraic concepts. Fix a ring R, R-modules A and B, and an R-module homomorphism

f : A → B.

In the algebra of modules, the kernel of f , written ker f , is the R-module f −1(0), i.e., the R-module consisting of

all elements a ∈ A such that f (a) = 0. The image of f , written im f , is the R-module f (A), i.e., the module of all

elements f (a) with a ∈ A. im f is isomorphic to A/ker f , i.e., A modulo the relation a ∼ a′ if and only if

a − a′ ∈ ker f . We will write an element of A/ker f as a (mod ker f ), for a ∈ A. The kernel has the following

universal property:

1. Let υ : ker f → A be the inclusion map. Then f υ : ker f → A = 0, where we write 0 for the zero map a → 0.

2. If C is any R-module and g: C → A is any homomorphism such that f g = 0, then im g ⊆ ker f . Let

hg: C → ker f be i g, where i: im g → ker f is the inclusion map.

3. hg is the unique map such that υ hg = g.

The cokernel of f , written coker f , is the R-module B/im A, i.e., B modulo the relation b ∼ b′ if and only if

b − b′ ∈ im A. The cokernel has the following universal property:

1. Let υ : B → coker f be the projection map b → b (mod im f ). Then υ f : A → coker f = 0.

2. If C is any R-module and g: B → C is any homomorphism such that g f = 0, then im f ⊆ ker g. Therefore

the projection map q: coker f = B/ker f → B/ker g ≅ im g given by
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b (mod im f ) → b (mod ker g),

is well-defined. Let hg: coker f → C be i q, where i is the inclusion map from B/ker g ≅ im g to C.

3. hg is the unique map such that hg υ = g.

Now we translate these concepts to category theory. Fix a category C that contains a null object (§ 5), so that for

ev ery pair of objects (a, b) there is a null arrow a
0

→ b. Fix an arrow a
f

→ b in C.

The kernel of f (in the category-theoretic sense) is a limit (§ 10.1) whose limit cone has the form shown in Fig-

ure 21. The commutative diagram says f υ = 0. The universal property of the limit says that for any object c and

any cone like Figure 21 with vertex c instead of vertex ker f and with arrow c
g

→ a instead of ker f
υ

→ a, there

exists a unique arrow c
hg

→ ker f such that υ hg = g. This is exactly the universal property that we stated above for

the algebraic kernel.

ker f = Lim S

a b
f

υ 0

Figure 21: The limit cone for ker f .

The cokernel of f (again in the category theoretic sense) is the dual of the kernel. It is a colimit (§ 10.2) whose col-

imit cone has the form shown in Figure 22. The commutative diagram says υ f = 0. The universal property of the

colimit says that for any object c and any cone like Figure 22 with vertex c instead of vertex coker f and with arrow

b
g

→ c instead of b
υ

→ coker f , there exists a unique arrow coker f
hg

→ c such that hg υ = g. This is exactly the uni-

versal property that we stated above for the algebraic cokernel.

coker f = Colim S

a b
f

0 υ

Figure 22: The colimit cone for coker f .

Equalizers and coequalizers: Equalizers and coequalizers generalize kernels and cokernels. They are available in

categories that do not have zero objects and zero arrows. Fix a category C and arrows a
f1→ b and a

f2→ b in C.

The equalizer of f1 and f2, which we will denote eq( f1, f2), is a limit whose limit cone has the form shown in Fig-

ure 23. The arrow υ “equalizes” the arrows f1 and f2, in the sense that f1 υ = f2 υ . It is universal among equaliz-

ing arrows, in the sense that for any object c and any cone like Figure 23 with vertex c instead of vertex eq( f1, f2)

and with arrow c
g

→ a instead of eq( f1, f2)
υ

→ a, there exists a unique arrow c
hg

→ eq( f1, f2) such that υ hg = g.

eq( f1, f2) = Lim S

a b
f1

f2

υ f1 υ = f2 υ

Figure 23: The limit cone for eq( f1, f2).
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In a category with zero arrows, we have eq( f1, 0) = ker f1 and eq(0, f2) = ker f2; this is clear from comparing Fig-

ure 23 with Figure 21. In the category R-Mod, we hav e eq( f1, f2) = ker ( f1 − f2) = ker ( f2 − f1), where f1 − f2

denotes the map x → f1 x − f2 x.

The coequalizer of f1 and f2, which we will denote coeq( f1, f2), is a colimit whose colimit cone has the form

shown in Figure 23, after replacing eq with coeq, replacing Lim with Colim, and reversing all arrows and composi-

tions. The universal property is the same as for an equalizer, after replacing eq with coeq and reversing all arrows

and compositions.

In a category with zero arrows, we have coeq( f1, 0) = coker f1 and coeq(0, f2) = coker f2. In the category R-Mod,

we have coeq( f1, f2) = coker ( f1 − f2) = coker ( f2 − f1).

Pullbacks and pushouts: A pullback in a category C is a limit in which the index category I of the functor

S: I → C is described by the diagram 1 → 2 ← 3, plus the identity arrows. The limit cone has the commutative dia-

gram shown in Figure 24. The universal property of the limit says that for any cone constructed from Figure 24 by

replacing Lim S with c and υ with τ , there exists an arrow c
gτ→ Lim S such that for all i ∈ I , τ i = υ i gτ .

Lim S

S 1 S 2 S 3

υ1 υ2 υ3

f12 f32

Figure 24: The limit cone for a pullback.

Note that the diagram in Figure 24 is completely determined by the four arrows υ1, f12, υ3, and f32, because we

have υ2 = f12 υ1 = f32 υ3. For this reason, the limit diagram in Figure 24 is often written as a square, omitting the

arrow υ2.

A pushout in a category C is the dual concept of a pullback. It is a colimit in which the index category I is

described by the diagram 1 ← 2 → 3, plus the identity arrows. The limit cone is as shown in Figure 24, after replac-

ing Lim with Colim and reversing all arrows. The universal property is the same as for a pullback, after replacing

Lim with Colim and reversing all arrows and compositions.

13. Functors to Set

In this section, we will consider functors from a category C to SetV (the category of all sets contained in some set

V ), where V contains all the hom sets of C. If all C has small hom sets, we may take V = U and write Set instead of

SetV .

13.1. Covariant Functors

In this section we will consider a covariant functor F : C → SetV .

We define the Yoneda functor Y : Cop → SetC
V as follows:

1. Recall from § 6 that for any object a in C, homC (a, −) = C(a, −) is a functor from C to SetV , i.e., an object in

the category SetC
V . The object function of this functor is b → C(a, b). The arrow function is

f → C(a, f ) = C(1a, f ).

The object function of Y takes each object a to the functor Y a = C(a, −).

2. For any arrow a
f

→ b, the rule C( f , −) c = C( f , c) makes C( f , −) into a natural transformation from the func-

tor C(b, −) = Y b to the functor C(a, −) = Y a. This natural transformation is an arrow in the category SetC
V .

The arrow function of Y takes each arrow a
f

→ b to the natural transformation Y f = C( f , −).

The Yoneda functor is full and faithful.

Fix a functor F : C → SetV and an object a of C. Then Y a and F are both functors from C to SetV , i.e., objects in

the category SetC
V . Further, a natural transformation τ : Y a

⋅
→ F is an arrow in SetC

V , so it is an element of
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SetC
V (Y a, F). Observe the following:

• The component τ a is an arrow (mapping of sets) from Y a a = (Y a) a = C(a, a) to F a.

• The arrow 1a in C is an element of C(a, a), so τ a 1a is defined and is an element of F a.

We define the Yoneda map ya: SetC
V (Y a, F) → F a as follows: ya τ = τ a 1a. We will refer to ya τ as the Yoneda

image of the natural transformation τ : Y a
⋅

→ F .

The Yoneda map is a bijection, so we have SetC
V (Y a, F) ≅ F a as sets. This statement is called the Yoneda lemma

(proof omitted). It states that every natural transformation τ : Y a
⋅

→ F is completely determined by its Yoneda

image ya τ .

The Yoneda map provides a natural isomorphism, in the following way:

1. Define the natural transformation functor N : SetC
V × C → SetV as follows. The object function takes (F , a)

to SetC
V (Y a, F), the set of natural transformations from Y a to F . The arrow function takes (F

τ
→ G, a

f
→ b)

to the map m: SetC
V (Y a, F) → SetC

V (Y b, G) giv en by

m σ = m({Y a c
σ c→ F c}c ∈ C ) = {Y b c

Y f c
→ Y a c

σ c→ F c
τ c→ G c}c ∈ C .

Here σ is a natural transformation, expressed as a family of components {σ c}c ∈ C . Similarly m σ is a natural

transformation, expressed as a family {(m σ )c}c ∈ C . As usual, the chained arrows indicate composition. In

the “backwards” notation, the composition is τ c σ c (Y f c).

2. Define the ev aluation functor E: SetC
V × C → SetV as follows. The object function takes (F , a) to F a. The

arrow function takes (F
τ

→ G, a
f

→ b) to (G f ) τ a = (F f ) τ b, where the equality holds by Figure 3.

3. Each Yoneda map ya is the component at a of a natural isomorphism y: N
⋅

→ E.

A covariant functor F : C → SetV is representable if there exist an object a of C and a natural isomorphism

φ : Y a = C(a, −)
⋅

→ F . The pair (a, φ ) is called a representation of F .

Fix categories C and D, a functor F : C → D, and an object a of C. Let YC denote the Yoneda functor in the cate-

gory C and YD denote the Yoneda functor in the category D. An arrow s
u

→ F a in D is a universal arrow from s to

F (§ 9) if and only (1) if there exists a representation (a, φ ) of the functor

D(s, F −) = D(s, −) F = (YD s) F ,

i.e., a natural isomorphism φ : YC a
⋅

→ (YD s) F ; and (2) u is the Yoneda image ya φ = φ a 1a (proof omitted).

13.2. Contravariant Functors

In this section we will consider a contravariant functor F : Cop → SetV .

The dual of the Yoneda functor is the functor Y ′: C → SetCop

V defined as follows:

1. For any object a, C(−, a) is a contravariant functor from C to SetV , i.e., an object in SetCop

V . The object func-

tion of Y ′ takes each object a to the functor Y ′ a = C(−, a).

2. For any arrow a
f

→ b, the rule C(−, f ) c = C(c, f ) makes C(−, f ) into a natural transformation from the func-

tor C(−, a) = Y ′ a to the functor C(−, b) = Y ′ b. This natural transformation is an arrow in the category SetCop

V .

The arrow function of Y ′ takes each arrow a
f

→ b to the natural transformation C(−, f ).

The functor Y ′ is full and faithful.

Fix a functor F : Cop → SetV and an object a of C. Then Y ′ a and F are both functors from Cop to SetV , i.e., objects

in the category SetCop

V . Further, a natural transformation τ : Y ′ a
⋅

→ F is an arrow in SetCop

V , so it is an element of

SetCop

V (Y ′ a, F). We define the dual Yoneda map y′a: SetCop

V (Y ′ a, F) → F a as follows: y′a τ = τ a 1a. We will refer

to y′a τ as the dual Yoneda image of the natural transformation τ : Y ′ a
⋅

→ F .

The dual Yoneda map is a bijection, so we have SetCop

V (Y ′ a, F) ≅ F a as sets. This statement is the dual of the

Yoneda lemma (§ 13.1). It states that every natural transformation τ : Y ′ a
⋅

→ F is completely determined by its dual

Yoneda image y′a τ .
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The dual Yoneda map provides a natural isomorphism, in the following way:

1. Define the natural transformation functor N : SetCop

V × C → SetV as follows. The object function takes

(F , a) to SetCop

V (Y ′ a, F), the set of natural transformations from Y ′ a to F . The arrow function takes

(F
τ

→ G, a
f

→ b) to the map m: SetCop

V (Y ′ a, F) → SetCop

V (Y ′ b, G) giv en by

m σ = m({F c
σ c→ Y ′ a c}c ∈ C ) = {G c

τ c→ Fc

σ c→ Y ′ a c
Y ′ f c
→ Y ′ b c}c ∈ C .

2. Define the ev aluation functor E: SetC
V × C → SetV as follows. The object function takes (F , a) to F a. The

arrow function takes (F
τ

→ G, a
f

→ b) to τ a (G f ) = τ b (F f ), where the equality holds by Figure 3 with

the vertical arrows reversed.

3. Each dual Yoneda map y′a is the component at a of a natural isomorphism y′: N
⋅

→ E.

A contravariant functor F : Cop → SetV is representable if there exist an object a of C and a natural isomorphism

φ : Y ′ a = C(−, a)
⋅

→ F .

Fix categories C and D, a functor F : C → D, and an object a of C. Let Y ′C denote the dual Yoneda functor in the

category C and Y ′D denote the dual Yoneda functor in the category D. An arrow F a
u

→ t in D is a universal arrow

from F to t (§ 9) if and only if (1) there exists a representation (a, φ ) of the functor

D(F −, t) = D(−, t) F = (Y ′D t) F ,

i.e., a natural isomorphism φ : Y ′C a
⋅

→ (Y ′D t) F ; and (2) u is the dual Yoneda image y′a φ = φ a 1a (proof omitted).

14. Adjoint Functors

In this section we discuss adjoint functors. Adjoint functors (or adjunctions) are pairs of functors that are related in

a special way. They appear frequently throughout mathematics.

14.1. Definition

Fix categories CL and CR and functors FL : CL → CR and FR: CR → CL . Observe the following:

1. CR(FL −, −) = CR(−, −) (FL × ICR
) is a bifunctor from CL × CR to SetV , contravariant in the first argument

and covariant in the second argument.

2. CL(−, FR −) = CL(−, −) (ICL
× FR) is also a bifunctor from CL × CR to SetV , contravariant in the first argu-

ment and covariant in the second argument.

FL and FR are adjoint functors, and FL is the left adjoint, and FR is the right adjoint, if there is a natural isomor-

phism between CR(FL −, −) and CL(−, FR −). We usually write this natural isomorphism CR(FL −, −) ≅
CL(−, FR −), but we can also write CL(−, FR −) ≅ CR(FL −, −). The two expressions are equivalent. The signifi-

cance of “left” and “right” lies in where FL and FR appear inside the expressions CR(FL −, −) and CL(−, FR −), not

in the left and right sides of the isomorphism.

14.1.1. Right Adjuncts

We may express the natural isomorphism CR(FL −, −) ≅ CL(−, FR −) as a natural transformation

φ : CR(FL −, −)
⋅

→ CL(−, FR −)

in which, for each object (aL , aR) in CL × CR, the component

φ (aL ,aR): CR(FL aL , aR) → CL(aL , FR aR)

is a bijection of sets. This bijection identifies arrows FL aL → aR in CR with arrows aL → FR aR in CL . Fix an

arrow f ∈ CR(FL aL , aR). The element φ (aL ,aR) f ∈ CL(aL , FR aR) is called the right adjunct of f .

A natural isomorphism of bifunctors is natural in each of its arguments (§ 11.1). Therefore, for each pair of objects

(a′L , a′R) in CL × CR, and for each pair of arrows ( fL , fR) ∈ CL(a′L , aL) × CR(aR, a′R), the diagram shown in Fig-

ure 25 commutes. The top rectangle commutes because φ (−,aR): CR(FL −, aR)
⋅

→ CL(−, FR aR) is a natural isomor-

phism. The bottom rectangle commutes because φ (aL ,−): CR(FL aL , −)
⋅

→ CL(aL , FR −) is a natural isomorphism.
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CR(FL aL , aR) CL(aL , FR aR)

CR(FL aL , a′R) CL(aL , FR a′R)

CR(FL a′L , aR) CL(a′L , FR aR)

CR(FL aL , fR) = f → fR f

φ (aL ,a′R)

φ (aL ,aR)

CL(aL , FR fR) = f → (FR fR) f

φ (a′L ,aR)

CR(FL fL , aR) = f → f (FL fL) CL( fL , FR aR) = f → f fL

Figure 25: The commutative diagram for the natural isomorphism φ .

Equivalently, for all f ∈ CR(FL aL , aR), the following identities hold:

φ (a′L ,aR)( f (FL fL)) = (φ (aL ,aR) f ) fL (top rectangle, naturality of φ (−,aR))

φ (aL ,a′R)( fR f ) = (FR fR) (φ (aL ,aR) f ) (bottom rectangle, naturality of φ (aL ,−))

14.1.2. Left Adjuncts

We may also express the natural isomorphism CR(FL −, −) ≅ CL(−, FR −) as a natural transformation

ψ = φ −1: CL(−, FR −)
⋅

→ CR(FL −, −)

in which, for each object (aL , aR) in CL × CR, the component

ψ (aL ,aR): CL(aL , FR aR) → CR(FL aL , aR)

is a bijection of sets. Fix an arrow f ∈ CL(aL , FR aR). The element ψ (aL ,aR) f ∈ CR(FL aL , aR) is called the left

adjunct of f . The dual of the diagram and of the identities shown for right adjuncts hold for left adjuncts.

14.2. The Unit and Counit

In this section, we will discuss the unit and counit, which are special natural transformations associated with each

adjunction. Fix an adjunction A consisting of functors FL : CL → CR and FR: CR → CL with natural isomorphisms

φ and ψ = φ −1 as in § 14.1.

14.2.1. The Unit

Observe that ICL
(the identity functor on CL) and the composite functor FR FL are both functors from CL to CL .

The unit associated with the adjunction A is the transformation η from ICL
to FR FL given by

η = {ηaL
= φ (aL ,FL aL) 1FL aL

}aL ∈ CL
.

To see that this definition makes sense, set aR = FL aL in the definition of φ (aL ,aR) and observe that

φ (aL ,FL aL): CR(FL aL , FL aL) → CL(aL , FR (FL aL))

is a bijection. Observe also that 1FL aL
is an arrow from FL aL to itself, and so in the domain of this bijection.

Therefore ηaL
is an arrow from aL = ICL

aL to FR (FL aL) = (FR FL) aL , as required for a transformation from ICL

to FR FL .

We will now show that the unit η has the following properties:

1. η is a natural transformation η: ICL

⋅
→ FR FL .

2. For each object aL in CL , the arrow aL

ηaL→ FR (FL aL) is universal from aL to FR.

3. For every pair of objects (aL , aR) in CL × CR and every arrow FL aL

f
→ aR in CR, we hav e

φ (aL ,aR) f = (FR f ) ηaL
.
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Property 1: For any arrow aL

f
→ a′L in CL , we hav e

((FR FL) f ) ηaL
= (FR (FL f )) ηaL

(definition of composite functor)

= (FR (FL f )) (φ (aL ,FL aL) 1FL aL
) (definition of ηaL

)

= φ (aL ,FL a′L)((FL f ) 1FL aL
) (naturality of φ (aL ,−))

= φ (aL ,FL a′L)(1FL a′L (FL f )) (definition of identity arrow)

= (φ (a′L ,FL a′L) 1FL a′L ) f (naturality of φ (−,FL a′L))

= ηa′L f (definition of ηa′L )

= ηa′L (ICL
f ) (definition of identity functor).

Property 2: By the remarks at the end of § 13.1, s
u

→ F a is universal to F : C → D if and only if (a) there exists a

natural isomorphism φ u: YC a
⋅

→ (YD s) F ; and (b) u is the Yoneda image ya φ u = (φ u)a 1a. Set s = aL , u = ηaL
,

F = FR, and a = FL aL . Then aL

ηaL→ FR (FL aL) is universal to FR: CR → CL if and only if (a) there exists a natu-

ral isomorphism

φηaL
: YCR

(FL aL)
⋅

→ (YCL
aL) FR;

and (b) ηaL
is the Yoneda image yFL aL

φηaL
= (φηaL

)FL aL
1FL aL

.

a. Applying the definition of the Yoneda functor Y gives

φηaL
: CR(FL aL , −)

⋅
→ CL(aL , FR −).

Setting φηaL
= φ (aL ,−) provides the required natural isomorphism.

b. By part (a),

(φηaL
)FL aL

1FL aL
= (φ (aL ,−))FL aL

1FL aL
.

By the definition of the natural transformation φ (aL ,−), this is φ (aL ,FL aL) 1FL aL
. This is exactly the definition of

ηaL
given above.

Property 3: For every arrow f ∈ CR(FL aL , aR), we have

φ (aL ,aR) f = φ (aL ,aR) ( f 1FL aL
) (definition of identity arrow)

= (FR f ) (φ (aL ,FL aL) 1FL aL
) (naturality of φ (aL ,−))

= (FR f ) ηaL
(definition of ηaL

).

14.2.2. The Counit

The counit is the dual construction to the unit. Observe that the composite functor FL FR and ICR
(the identity func-

tor on CR) are both functors from CR to CR. The counit associated with the adjunction A is the transformation ε
from FL FR to ICR

given by

ε = {ε aR
= ψ (FR aR,aR) 1FR aR

}aR ∈ CR
.

To see that this definition makes sense, set aL = FR aR in the definition of ψ (aL ,aR) and observe that

ψ (FR aR,aR): CL(FR aR, FR aR) → CR(FL (FR aR), aR)

is a bijection. Observe also that 1FR aR
is an arrow from FR aR to itself, and so in the domain of this bijection.

Therefore ε aR
is an arrow from FL (FR aR) = (FL FR) aR to aR = ICR

aR as required for a transformation from

FL FR to ICR
.
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The counit ε has the following properties:

1. ε is a natural transformation ε : FL FR

⋅
→ ICR

.

2. For each object aR in CR, the arrow FL (FR aR)
ε aR→ aR is universal from FL to aR.

3. For every pair of objects (aL , aR) in CL × CR and every arrow aL

f
→ FR aR in CL , we hav e

ψ (aL ,aR) f = ε aR
(FL f ).

The proofs are dual to the proofs for the unit (§ 14.2.1).

14.2.3. The Composite Natural Transformations

By the observations at the end of § 7, we may form the natural transformations

η FR: (ICL
FR = FR)

⋅
→ FR FL FR

and

FR ε : FR FL FR

⋅
→ (FR ICR

= FR).

Then we may form the composite natural transformation

((FR ε ) ⋅ (η FR): FR

⋅
→ FR) = aR → ((FR ε ) aR) ((η FR) aR).

(§ 7). This composite is in fact the identity transformation aR → 1FR aR
, because

((FR ε ) aR) ((η FR) aR) = (FR ε aR
) ηFR aR

= φ (FR aR,aR) ε aR
(property 3 of the unit)

= φ (FR aR,aR)(φ (FR aR,aR)
−1 1FR aR

) (definition of ε aR
)

= 1FR aR
.

Dually, we may form the composite natural transformation

((ε FL) ⋅ (FL η): FL

⋅
→ FL) = aL → ((ε FL) aL) ((FL η) aL),

and this composite is the identity transformation aL → 1FL aL
.

14.3. Example

In this section we work through a detailed example of adjoint functors. For many more examples, see, e.g., [Mac

Lane 1998].

The categories and functors: Set CL = CR = Set. Let hom denote homSet. Fix a set B in Set.

1. Let − × B be the covariant functor that takes a set A in Set to the set A × B and takes a function f : A → A′ in

Set to the function f × 1B = (a, b) → ( f (a), b): A × B → A′ × B,

2. As usual, let FR = hom(B, −) be the covariant functor that takes a set C in Set to the set hom(B, C) and takes a

function f : C → C′ in Set to the function hom(B, f ) = g → g f : hom(B, C) → hom(B, C′).
We will demonstrate that setting FL = − × B and FR = hom(B, −) yields an adjunction. This adjunction is an expres-

sion in category theory of the relationship called currying in computer science. For a similar adjunction consisting

of the functors − ⊗R B and homR−Mod(B, −) in the category R−Mod, see my paper Definitions for Commutative

Algebra.

The bijection φ : For each pair (A, C) in Set × Set, the bijection φ has type

φ (A,C): hom(A × B, C) → hom(A, hom(B, C)).

For each function f : A × B → C, let

φ (A,C) f = a → (b → f (a, b)).
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Then φ has the correct type, and it has an inverse

φ (A,C)
−1 g = ψ (A,C) g = (a, b) → g a b

defined for all g: A → (B → C), so it is a bijection.

The naturality of φ : Let aL = A and aR = C, and fix functions fL : A′ → A and fR: C → C′. We must show that

both rectangles of Figure 25 commute, for any f ∈ hom(A × B, C).

Bottom rectangle: We hav e

φ (A,C′) ( fR f ) = a → (b → ( fR f ) (a, b)) = a → (b → fR f (a, b)).

On the other hand, we have

(FR fR) (φ (A,C) f ) = hom(B, fR) (φ (A,C) f )

= (g → fR g) (a → (b → f (a, b)))

= a → ( fR (b → f (a, b)))

= a → (b → fR f (a, b)).

Top rectangle: We hav e

φ (A′,C) ( f (FL fL)) = φ (A′,C) ( f ( fL × B))

= φ (A′,C) ( f ((a′, b) → ( fL a′, b)))

= φ (A′,C) ((a′, b) → f ( fL a′, b))

= a′ → (b → f ( fL a′, b)).

On the other hand, we have

(φ (A,C) f ) fL = (a → (b → f (a, b))) fL

= a′ → (b → f ( fL a′, b)).

The unit: For each set A, η A is an arrow from A to hom(B, A × B). It is the function

φ (A,A×B) 1(A×B) = a → (b → 1(A×B) (a, b)) = a → (b → (a, b)).

As expected, the arrow

A
η A→ hom(B, A × B) = hom(B, −) (A × B)

is universal from A to hom(B, −). Indeed, if f : A → hom(B, S) is any mapping of sets, then

g f = (a, b) → f a b

is the unique function such that hom(B, g f ) η A = f . Also as expected, for every pair of sets (A, C) in Set × Set

and every arrow A × B
f

→ C in Set, we hav e

φ (A,C) f = (FR f ) η A = hom(B, f ) η A.

Indeed,

hom(B, f ) η A = (g → f g) (a → (b → (a, b)))

= a → ( f (b → (a, b)))

= a → (b → f (a, b))
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= φ (A,C) f .

The counit: For each set C in Set, εC is an arrow from hom(B, C) × B to C. It is the function

ψ (hom(B,C),C) 1hom(B,C) = ( f , b) → (1hom(B,C) f ) b = ( f , b) → f b.

As expected, the arrow

(− × B) hom(B, C) = hom(B, C) × B
εC→ C

is universal from − × B to C. Indeed, if f : S × B → C is any mapping of sets, then

g f = s → (b → f (s, b))

is the unique function such that ε A (g f × B) = f . Also as expected, for every pair of sets (A, C) in Set × Set and

ev ery function A
f

→ hom(B, C) in Set, we hav e

ψ (A,C) f = εC ( f × B).

Indeed,

εC ( f × B) = (( f , b) → f b) ((a, b) → ( f a, b))

= (a, b) → f a b

= ψ (A,C) f .

The composite natural transformations: As expected, for every set C in Set, we hav e

hom(B, εC ) ηhom(B,C) = (g → εC g) ( f → (b → ( f , b)))

= f → (b → εC ( f , b))

= f → (b → f b)

= f → f

= 1hom(B,C).

Also as expected, for every set A in Set, we hav e

ε A×B (η A × B) = (( f , b) → f b) ((a, b) → (b → (a, b), b))

= (a, b) → ((b → (a, b)) b)

= (a, b) → (a, b)

= 1A×B.

15. Conclusion

This document has defined some of the fundamental concepts of category theory. For more advanced material, see,

e.g., [Mac Lane 1998]. If you master the concepts in this document, you should be in a good position to learn more.

The discussion in [Mac Lane 1998] skips many details; the examples in this paper should suggest how to fill them

in. For a discussion of monads applied to computer science, see my paper Monads, Categories, and Computation.
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invertible: § 5

isomorphic: § 5

isomorphism: §§ 5, 6

kernel: § 12

large: § 1

left adjoint: § 14.1

left adjunct: § 14.1.2

left cancellable: § 5

left inverse: § 5

limit object: § 10.1

limit: § 10.1

Mod: §§ 2, 4

monic: § 5

morphism of functors: § 7

morphism: § 12

natural equivalence: § 7

natural in: § 11.1

natural isomorphism: § 7

natural transformation functor: §§ 13.1, 13.2

natural transformation: § 7

natural: § 7

null object: § 5

objects: § 2

opposite category: § 8

opposite functor: § 8

power: § 12

preorder: § 10.1

projection map: § 11.1

proper classes: § 1

pullback: § 12

pushout: § 12

quotient category: § 12

representable: §§ 13.1, 13.2

representation: § 13.1

respects: § 12

retraction: § 5

right adjoint: § 14.1
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right adjunct: § 14.1.1

right cancellable: § 5

right inverse: § 5

Rng: § 2

section: § 5

Set: §§ 5, 6

small: §§ 1, 10.3

split epi: § 5

split exact sequence: § 5

split monic: § 5

splits: § 5

subcategory: § 2

terminal: § 5

transformation of functors: § 7

unit: § 14.2.1

universal arrow: § 9

universal element: § 9

universe: § 1

vertex: §§ 10.1, 10.2

Yoneda functor: § 13.1

Yoneda image: § 13.1

Yoneda lemma: § 13.1

Yoneda map: § 13.1

zero arrow: § 5


