
A Type System for Borrowing Permissions

Karl Naden Robert Bocchino
Jonathan Aldrich

Carnegie Mellon University, Pittsburgh, PA, USA
{kbn,rbocchin,jonathan.aldrich}@cs.cmu.edu

Kevin Bierhoff
Two Sigma Investments, New York, NY, USA

kevin.bierhoff@cs.cmu.edu

Abstract
In object-oriented programming, unique permissions to object ref-
erences are useful for checking correctness properties such as con-
sistency of typestate and noninterference of concurrency. To be us-
able, unique permissions must be borrowed — for example, one
must be able to read a unique reference out of a field, use it for
something, and put it back. While one can null out the field and
later reassign it, this paradigm is ungainly and requires unneces-
sary writes, potentially hurting cache performance. Therefore, in
practice borrowing must occur in the type system, without requir-
ing memory updates. Previous systems support borrowing with
external alias analysis and/or explicit programmer management
of fractional permissions. While these approaches are powerful,
they are also awkward and difficult for programmers to under-
stand. We present an integrated language and type system with
unique, immutable, and shared permissions, together with new lo-
cal permissions that say that a reference may not be stored to
the heap. Our system also includes change permissions such as
unique>>unique and unique>>none that describe how per-
missions flow in and out of method formal parameters. Together,
these features support common patterns of borrowing, including
borrowing multiple local permissions from a unique reference and
recovering the unique reference when the local permissions go
out of scope, without any explicit management of fractions in the
source language. All accounting of fractional permissions is done
by the type system “under the hood.” We present the syntax and
static and dynamic semantics of a formal core language and state
soundness results. We also illustrate the utility and practicality of
our design by using it to express several realistic examples.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory—Borrowing; D.3.3 [Pro-
gramming Languages]: Language Constructs and Features
—Permissions

General Terms Design, Languages, Theory, Verification

Keywords Types, Permissions, Borrowing, Uniqueness,
Immutability

1. Introduction
Permissions are annotations on pointer variables that specify how
an object may be aliased, and which aliases may read or write to
the object [9]. For example, unique [20] indicates an unaliased

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’12, January 25–27, 2012, Philadelphia, PA, USA.
Copyright © 2012 ACM 978-1-4503-1083-3/12/01. . . $10.00

object, immutable [24] indicates an object that can be aliased
but cannot be mutated, and shared [3] indicates an object that
may be aliased and can be mutated. Permission systems have been
proposed to address a diversity of software engineering concerns,
including encapsulation [24], protocol checking [3, 13], safe con-
currency [6, 8], security [5], and memory management [9, 15].
Recently, new programming languages have incorporated permis-
sions [28] or related affine types [26] as fundamental parts of the
type system.

In order to leverage permissions in practice, programmers must
be able to manipulate them effectively. One form of manipulation
is permission splitting: for example, converting a unique permis-
sion into multiple shared permissions, or alternatively into multiple
immutable permissions. A shared (or immutable) permission can
then be split further into more shared (respectively immutable) per-
missions. A second important form of manipulation is borrowing:
extracting a permission from a variable field, using it temporarily,
and then returning all or part of it to the source. For example, a
method may require an immutable permission to the receiver; if we
have a unique permission to an object, we’d like to call the method
on that object, and provided the method does not allow an alias
to the receiver to escape, we’d like to get our unique permission
back at the end. Crucially, recovering the permission should not
require reassigning the original variable (which may not even be
assignable).

Borrowing was originally proposed by [19]; however, good sup-
port for this feature has remained an open and difficult problem.
Prior type-based systems [1, 19, 22] provided a borrowed annota-
tion, but they did not support the immutable references that are an
essential part of many recent systems [3, 8, 28]. A number of sys-
tems supported borrowing via a program analysis [4, 7], but the pro-
gram analysis relies on shape analysis, which is fragile and noto-
riously difficult for programmers to understand. Boyland proposed
fractional permissions [8] to support splitting and recombining per-
missions, with borrowing as a special case, but its mathematical
fraction abstraction is unnatural for programmers, to such an extent
that the automated tools we know of once again hide the fractions
behind an (inscrutable) analysis [3, 17].

A good borrowing facility should have a number of properties.
It should support a natural programming style (e.g. avoid awkward
constructs like replacing field write with a primitive swap opera-
tion [16], or a requirement to thread a reference explicitly from one
call to the next by reassigning the reference each time [26]). Rea-
soning abstractions should likewise be natural (not fractions [8]).
It should support borrowing from unique, immutable, and shared
variables and fields. Rules should be local so the programmer can
understand them and predict how they operate (vs. a non-local anal-
ysis [3, 7] or constraint-based inference).

The contribution of this paper is the first borrowing approach
that meets all of the above properties. We provide a type system for
a Java-like language with permissions that are tracked through lo-
cal, predictable rules. Our technical approach includes a number of
innovations, including change permissions that show the incoming

and outgoing permissions to a method parameter, local permissions
that modify shared or immutable permissions to denote that they
cannot escape, an expressive rule for handling borrowing across
conditional branches, and a way to safely restore permissions to
the variable or field from which they were borrowed. We formalize
our type system, prove it sound, and demonstrate it via a series of
examples which can be checked by our prototype implementation.1

We describe the features of the language in the next section.
Section 3 formalizes our type system and gives soundness results.
We cover additional related work in section 4, and section 5 con-
cludes.

2. Language Features
In this section we informally explain the features of our language;
the next section gives a more formal treatment. Our language is
based on Plaid [28]. For our purposes, Plaid is similar to Java,
except:

• Instead of classes, Plaid uses states. This is because Plaid has a
first-class notion of typestate, which can be used to model ob-
ject state and transitions between states. We don’t use typestate
in this work, but we adhere to the Plaid syntax.

• Plaid has a match construct that evaluates an argument and
then uses its type to pick which of several cases to execute.

• Plaid has no null value in the surface syntax or programmer-
visible semantics. Instead, every object field and variable is
initialized to a non-null object.

• Plaid has a first-class notion of permissions. Supporting types-
tate is one important application of permissions, including the
novel borrowing mechanisms discussed in this work.

In the rest of this section we first give an overview of the
permissions in our language. Then we explain the mechanisms for
creating aliases of variables and fields with consistent permissions.
Then we explain the mechanism of change permissions, which
allows modular checking of permission flow in and out of methods.
Finally, we explain local permissions, which provide a way to split
a unique permission into several permissions and later recombine
them to unique, without explicit fractions.

2.1 Access Permissions
Permissions are a well-known way of controlling aliasing in ap-
plications such as typestate [3] and concurrency control [8]. Our
permission system is adapted from the access permissions system
of [3]. An access permission is a tag on an object reference that
says how the reference may be used to access the fields of the ob-
ject it refers to and how aliases of that reference may be created. In
this work, we use the following permissions:

• A unique permission to object reference o says that this is
the only usable copy of o: if any alias of o exists, then it has
permission none. The reference may be used to read and write
fields of the object O that it points to.

• A none permission says that the reference may not be used to
read or write the object it points to.

• An immutable permission says that the reference o may be
used only for reading, and not writing, the fields of the objectO
that it points to. Further, all other usable (non-none) references
toO are guaranteed to be immutable, so no aliased reference
can be used to write O either.

1 available at http://code.google.com/p/plaid-lang/

• A shared permission says that the reference o may be used
for reading and writing, and there is no restriction on aliases of
o (so shared is like an ordinary reference in Java).

• A local immutable or local shared permission is
like an immutable (respectively shared) permission, ex-
cept it can only be passed around in local variables, and can’t be
assigned to the heap. Local permissions are new with this work
and are explained further in Section 2.4.

If any alias of a unique reference is created, then the unique
permission must be consumed (but it can be transferred to the
alias). A unique permission is therefore like a linear resource [14].
By contrast, immutable and shared references may be freely
replicated.

While other access permissions are possible, these permissions
suffice to illustrate the concepts in this paper. Further, these per-
missions can express a wide range of computation patterns. Other
permissions could be added to the system without difficulty.

2.2 Aliasing Variables and Fields
In contrast to a language like Java with unrestricted aliasing, a
language with access permissions must maintain careful control
over how aliases are created. We now discuss how our language
manages permissions for aliases of variables and object fields.

(a) Borrowing Unique from a Variable

1 unique x = new S1; // x:unique
2 {
3 unique y = x; // x:none,y:unique
4 } // x:unique

(b) Borrowing Unique from One of Two Variables

1 unique x = new S1; // x:unique
2 unique y = new S2; // x:unique,y:unique
3 {
4 unique z = match(...) {
5 S1=>x; S2=>y; // x:none,y:none,z:unique
6 }
7 } // x:unique,y:unique

(c) Taking Unique from a Variable

1 unique x = new S2; // x:unique
2 unique y = new S1; // x:unique,y:unique
3 {
4 unique z = x; // x:none,y:unique,z:unique
5 y.f1 = z; // x:none,y:unique,z:none
6 } // x:none,y:unique

Figure 1. Examples of variable aliasing.

Aliasing Variables: In our language the following rules govern
aliasing of local variables:

1. Our local variables are single-assignment (i.e., they are as-
signed to only in their declaration) and are declared with ex-
plicit permissions, so the needed permission is always available
on the left-hand side of a variable assignment.

2. In typing and assignment, we compute all variables and fields
such that the value returned by the right-hand side of the assign-
ment may be obtained by reading the variable or field. Because
we can’t statically resolve which match case will be taken,
there may be more than one.

3. We maintain a typing environment, which we call a context,
with the permission associated with each variable. For each pos-
sible source variable, we make sure there is enough permission
in the context to extract the needed permission. We use permis-
sion splitting rules, given formally in the next section, to com-

pute the permission remaining in the source variables after the
extraction, and we update the context accordingly.

4. At the end of the scope of the assignee variable, we restore
whatever permission is left in that variable to the source vari-
ables. For this operation we use permission joining rules, which
are the reverse of the splitting rules.

Figure 1 shows examples, where the definitions of states S1 and
S2 are as follows:

state S1 { unique S1 f1 = new S2; }
state S2 case of S1 { unique S1 f2 = new S3; }
state S3 case of S2 {}

Here case of is like extends in Java and denotes subclassing.
In Figure 1(a), variable x is declared unique and initialized with
a fresh object in line 1. In line 3, variable y is created and takes
the unique permission out of x, leaving none in x. When y goes
out of scope in line 4, its unique permission flows back into
x. Figure 1(b) is similar, except that in line 5, we don’t know
which variable (x or y) will be read from at runtime, so we take
permissions out of both, record both as source variables, and restore
permissions to both at the end of z’s scope in line 7. The match
statement in lines 4–5 says to evaluate the selector expression
(represented as ellipses here) to an object reference o, then evaluate
the whole expression to x if the type of o matches S1, to y if the
type of o matches S2, and to halt if there is no match. While this
example is simple, in general typing match in our language is
subtle and requires merging the contexts generated by the different
match cases; the details are given in Section 3.2. Figure 1(c) shows
an example where the permission read out of x into z is stored into
the heap, so it can’t be returned to x at the end of z’s scope.

(a) Borrowing Unique from a Field

1 unique x = new S1; // x:unique
2 {
3 unique y = x.f1; // x:(unique,f1:none),y:unique
4 } // x:unique

(b) Borrowing Unique from a Variable or Field

1 unique x = new S1; // x:unique
2 unique y = new S1; // x:unique,y:unique
3 {
4 unique z = match(...) {
5 S1=>x; S2=>y.f1;
6 // x:none,y:(unique,f1:none),z:unique
7 }
8 } // x:unique,y:unique

(c) Taking Unique from a Field

1 unique x = new S1; // x:unique
2 unique y = new S1; // x:unique,y:unique
3 y.f1 = x.f1; // x:(unique,f1:none),y:unique

Figure 2. Examples of field aliasing.

Aliasing Fields: The rules for aliasing of fields are similar to those
for aliasing of local variables, with two exceptions. First, pulling a
permission out of a field can cause the residual permission to vi-
olate the statically declared field permission. For example, pulling
unique out of a field declared unique causes the field to have
permission none. In this case, we say the field is unpacked [12].
If an object has any unpacked fields, then we say the object is un-
packed. We must account for the actual permissions when access-
ing the fields of an unpacked object. Second, since fields can be
assigned to, the reference in the field at the point of permission
restore may not be the same reference that the permission came
from. In this case, we must be careful not to restore permissions to
the wrong reference, which would violate soundness.

Unpacking fields: To address the first issue, we store the current
permission of each unpacked field of each object in the context.
Figure 2 shows examples, where S1 and S2 are defined as before.
In Figure 2(a), line 3 shows the context after taking a unique
permission out of x.f1. The notation x:(unique,f1:none)
means that x has unique permission and points to an unpacked
object with none permission for field f1. Figure 2(b) shows how
to use the same mechanism from Figure 1 to pull a permission out
of either a variable or a field. Figure 2(c) shows an example of
taking a unique permission from a field and assigning it to another
field.

To ensure soundness, we place three restrictions on field un-
packing. First, an object can be unpacked via a variable with unique
permission, but not immutable or shared permission. This is so out-
standing aliases to the object don’t become inconsistent.2 Our lan-
guage also allows taking an immutable permission out of a unique
field v.f given immutable permission to v. In this case our type
system does not report v as unpacked in the context; this is sound
because once an object is seen with immutable permission it can
never become unique again.

Second, once an object o stored in variable v is unpacked,
permission to omay not be assigned to another variable or the heap
until v is packed again; otherwise we would not be able to track
the unpacked state of o through v’s information in the context. For
example, the following code is not allowed, because x is unpacked
when it is assigned to z:

1 unique x = new S1; // x:unique
2 unique y = x.f1; // x:(unique,f1:none),y:unique
3 unique z = x; // Disallowed because x is not packed

Third, a variable v must be packed at the point where it goes out
of scope; in particular method formal parameters must be packed at
the end of a method body. That is because the permission stored in
v could be flowing back to a different (packed) variable that gave
its permission to v when v was declared.

In practice, the programmer can comply with the latter two
requriements by carefully managing the scopes of variables that
read permissions from unique fields and/or writing fresh objects
into the fields to pack the fields at appropriate points. While in some
cases these writes may not be strictly necessary, the requirements
do not seem to be onerous in the examples we have studied. These
restrictions could be relaxed at the cost of additional language
complexity (for example, stating in method signatures which fields
of an incoming parameter must be packed).
Consistent permission restore: As an example of the second issue
identified above (erroneous permission restore), consider the fol-
lowing code:

1 unique x = new S2; // x:unique
2 {
3 unique y = x.f1; // x:(unique,f1:none),y:unique
4 x.f1 = new S2; // x:unique,y:unique
5 x.f2 = x.f1; // x:(unique,f1:none),y:unique
6 } // x:(unique,f1:none)

Restoring a permission to x.f1 at the end of y’s scope in line 6
would create an alias between x.f1 and x.f2, both with unique
permission. The problem is that the reference in field x.f1 in line
6 is not the same reference to which permission was taken in line
3, so restoring to it would be wrong.

To prevent this from happening, the static typing rules maintain
an identifier that is updated every time a field goes from packed
to unpacked. The permission restore occurs only if the identifier at
the point of the field access matches the identifier at the point of
restoration. For example, in the code shown above, at line 3 where

2 Local permissions, discussed in Section 2.4, provide an additional way to
unpack objects.

x.f1 is unpacked and its permission read into y, an identifier i is
associated with x.f1 and with y. Then in line 5, when x.f1 is
unpacked again, x.f1 gets a fresh identifier i′. In line 6, when y
goes out of scope, its identifier i does not match the identifier i′ of
the source location x.f1, so permission is not restored from y into
the location. Thus the identifier mechanism approximates object
identity at runtime; the approximation is conservative because each
assignment is assumed to assign a different object reference, even
if the same one is actually assigned twice.

2.3 Modular Checking with Change Permissions
To support modular checking of permission flow across method
scopes, we introduce a language feature called a change permis-
sion. Change permissions are inspired by, and similar to, change
types in Plaid [28]. However, whereas a change type in Plaid says
that an object may transition from one state to another (to sup-
port typestate), in our language change permissions specify only
that a reference permission changes from a stronger to a weaker
permission; the object type always persists. Further, while previ-
ous systems can distinguish borrowed and consumed permissions
at method boundaries [7, 11], change permissions are more flex-
ible, because they can record a change to any weaker permission
(not just none).

Syntactically, a change permission looks like π>>π′, where π
and π′ are permissions. Change permissions appear on method
formal parameters, including the implicit parameter this. For
example, a formal parameter can be declared π>>π′ s x, where
s is a state name. This declaration says the caller must ensure that
on entry to the method permission π is available for the reference
o stored in x, while the callee must ensure that on exit from the
method permission π′ is available for o. The bare permission π can
also function as a change permission; it is shorthand for π>>π.

Change permissions naturally support both borrowing and non-
borrowing uses of unique permissions. For example, a change
permission unique>>unique says that the permission in the
parameter value must be unique on entry to the method, and
the unique permission will be restored at the end of the method;
whereas unique>>none says that a unique permission is taken
and not returned (for example, because it is stored on the heap).

1 state Cell {}
2 state Cons case of Cell {
3 immutable Data data;
4 unique Cell next;
5 }
6 state List {
7 unique Cell head = new Cell;
8 void prepend(immutable Data elt) unique {
9 unique Cons newHead = new Cons with {

10 this.data = elt;
11 this.next = this.head; // this:(unique,head:none)
12 }
13 this.head = newHead; // this:unique
14 }
15 }
16

17 unique List list = new List; // list:unique
18 list.prepend(new Data); // list:unique

Figure 3. List prepend example.

Figure 3 shows an example using unique>>unique (written
in shorthand form as unique) to update a list with unique links.
Line 1 defines a Cell state representing an empty list cell. Lines
2–5 define a Cons cell which is a substate of Cell; it has a data
field with immutable permission and a next field with unique
permission. Lines 6 and following define the actual list. It has a
unique Cell for its head and a method prepend that (1) accepts
an immutable permission in elt and a unique permission

in this (unique in line 8 represents the change permission
associated with this); (2) leaves a unique permission in this
on exit; and (3) returns nothing. The comments in lines 11 and
13 show what happens when checking the method body. In line
11, this is unpacked when the unique permission is taken out
of this.head and assigned into newHead. In line 14, this is
packed back up when newHead is assigned into this.head.

Lines 17–18 show how things look from the point of view of
a caller of prepend. In line 17, list gets a fresh reference
with unique permission. This unique permission is passed into
prepend in line 18. However, because of the change permission
unique>>unique, the permission is restored on return from the
method, and list still has unique permission at the end of line 18.
Note that we could also have restored the permission by returning a
reference from prepend and assigning it back into list but this
is awkward and would require assignment into local variables.

1 state Data {
2 immutable Data publish() unique>>immutable {
3 // Add timestamp
4 this;
5 }
6 ...
7 }
8

9 unique List list = new List;
10 unique Data data = new Data; // data:unique
11 data.publish(); // data:immutable
12 list.prepend(data); // data:immutable

Figure 4. Publication example.

Figure 4 shows another example, this time using a change per-
mission unique>>immutable. In this example, the Data class
has a publish method that (1) requires a unique permission to
this; (2) uses the unique permission to write a time stamp to
the object; then (3) “freezes” the object in an immutable state
so it can only be read and never written by the rest of the pro-
gram. Lines 9–12 show how this state might be used. Line 10 cre-
ates a fresh Data object with unique permission. Line 11 calls
publish on Data, changing its permission to immutable. Line
12 puts the immutable permission into a list. Notice that since
publish also returns an immutable permission to this, we
could also have written list.prepend(data.publish());
but using the change permission on variable data makes clear in
the client code that the same object is going into publish and
into prepend.

2.4 Local Permissions
An important pattern for access permissions is to divide a unique
permission up into several weaker permissions, use the weaker
permissions for a while, and then put all the permissions back
together to reform the original unique. Doing this requires careful
accounting to ensure there are no outstanding permissions to the
reference (other than none) at the point where the unique is
recreated. One way to do this accounting is to use fractions [8].
However, while powerful, fractions are also difficult to use and
suffer from modularity problems [17]. Instead, we observe the
following:

• The complexity of fraction-based solutions arises in large part
because they allow permissions to be stored into the heap, then
taken out of the heap and recombined into unique.

• A common use of permissions split off from unique is to pass
them into methods, where they are used in local variables and
then returned, i.e., they never go into the heap.

Motivated by these observations, we introduce a new kind of
permission called a local permission. A local permission is des-

ignated with the keyword local, which may modify a shared
or immutable permission. A local permission annotates a local
variable; it says that any aliases of the variable created during its
lifetime exist only in local variables and are never stored to the
heap. (Local permissions are not necessary for unique or none,
because the permission itself already contains all the information
about aliasing to the heap: a unique local variable says there is
no alias on the heap or anywhere else, and a none local variable
says it doesn’t matter.) Since local permissions exist only in local
variables, when all the variables that borrowed local permissions
go out of scope, we can reform the original unique permission.
Borrowing Local Permissions from Variables: A local permis-
sion may be borrowed from a variable with unique permission,
leaving a special borrow permission in the context. The borrow
permission is used internally for accounting purposes, but never
appears in the programmer-visible language syntax. For example,
borrowing local immutable from a unique variable leaves
borrow(unique,immutable,1) in the context for that vari-
able. This entry says we are borrowing local immutable per-
missions from a unique permission, and one alias is outstanding.
Borrowing again from the same variable increments the counter,
while joining decrements the counter. Thus the counter tracks the
number of outstanding local aliases to the original unique per-
mission; when the counter is 1, joining the last local permission
recreates unique. Note that we do this counting only when creat-
ing local permissions, because in this language immutable or
shared permissions are never joined to unique.

(a) Rejoining Local Permissions to Unique

1 unique x = new S; // x:unique
2 {
3 local immutable y = x;
4 // x:borrow(unique,immutable,1),y:local immutable
5 {
6 local immutable z = x;
7 /* x:borrow(unique,immutable,2),
8 y:local immutable,z:local immutable */
9 }

10 // x:borrow(unique,immutable,1),y:local immutable
11 }
12 // x:unique

(b) This Example Does Not Type Check

1 local immutable S escape(unique S x) none {
2 // x:unique
3 local immutable y = x;
4 // x:borrow(unique,immutable,1),y:local immutable
5 y; // Local immutable permission taken here
6 /* x:borrow(unique,immutable,1),
7 y:borrow(local immutable,immutable,1) */
8 }

Figure 5. Borrowing local permissions from variables.

Figure 5(a) shows an example. The counter for x becomes 1 in
line 4 when y borrows from it, and 2 in line 7 when z borrows
from it. When z goes out of scope, the counter goes back down to
1, and when y goes out of scope, x becomes unique again. When
the counter exceeds one (as in line 7), we don’t rejoin to unique
yet because there are still aliases outstanding. Notice how the
counters in the borrow permissions effectively account for fractions
of permissions, by counting outstanding aliases. However, these
fractions are hidden in the typing and never seen or manipulated
by the programmer.

We must carefully account for local permissions that might es-
cape the current scope; otherwise we could not soundly reason
that all local permissions are out of scope when the local vari-
ables holding them are out of scope. Figure 5(b) shows how we
do this. In line 3, y takes a local immutable permission from x,

and line 5 attempts to return the local immutable permission to
the caller, while retaining the unique permission in x (as shown
in the signature in line 1 — remember that unique x is short-
hand for unique>>unique x). Of course this should not be al-
lowed. This example doesn’t type check, because when y goes out
of scope at the end of the method, two borrow permissions would
have to be joined, and our typing rules don’t allow this. Only a local
permission can be joined with a borrow permission. More gener-
ally, all aliases borrowed from a local permission must be rejoined
before the local permission can be rejoined to unique. However, if
the method signature in line 1 said unique>>none S x, then
the example would type check, because now x wouldn’t have to be
rejoined to unique to satisfy the parameter’s change permission.

1 state Cell { int size() none {0;} }
2 state Cons case of Cell {
3 immutable Data data;
4 unique Cell next;
5 int size() local immutable { 1 + this.next.size(); }
6 }
7 state List {
8 unique Cell head = new Cell;
9 int size() local immutable { this.head.size(); }

10 ...
11 }
12

13 unique List list = new List; // list:unique
14 list.prepend(new Data); // list:unique
15 int size = list.size(); // list:unique

Figure 6. List size example.

Borrowing Local Permissions from Fields: Our language also al-
lows borrowing local permissions from unique fields. This is par-
ticularly useful when the permission to the object is local. Other-
wise, we would need unique permission to the object even to read a
unique field of the object, and it is well known that this requirement
is very restrictive (essentially, any access to a linear reference must
be through a chain of linear references) [13].

Figure 6 shows how this works for a simple example that com-
putes the size of a list with unique references, requiring read-only
access to the list. In line 15, size requires local immutable
permission to the list (line 11), so local immutable permission is
borrowed from list as discussed above, then put back to reform
unique at the end of the method call. Inside the size method
of List, in line 9, this has local immutable permission at the
start of the method. At the call of this.head.size(), local im-
mutable permission is borrowed from this.head. At that point,
the context entry for this is

this:(local immutable,head:borrow(unique,immutable,1))

saying that this has local immutable permission and points to
an unpacked object with one local immutable reference borrowed
from its head field. On return from this.head.size(), the
permissions are put back together to repack the object. The same
thing happens in Cell.size (line 5). Notice that the ability to
borrow local permissions is very useful here: without it, we would
either have to permanently convert the unique to immutable,
thereby destroying the unique permission to the list to compute its
size, or we would have to require unique permission to the list for
the size computation, which is too restrictive.

One subtlety of this mechanism is that it allows multiple local
variables that point to the same object to have different information
about whether the object is packed. For example, consider an object
O with a unique field f and two aliases ofO, x and y, where y was
created as an alias of x by pulling a local σ from the unique
permission in x. This leaves x with the permission local σ as

well, which allows us to pull a local σ from x.f , unpacking
x. Since the type system does not explicitly track what variables
are aliases y remains packed. This is fine because the splitting
rules prevent anything other than a local σ from being pulled
out through y.f . Furthermore, by the time y leaves scope and x
becomes unique again, all local aliases to the field f ofO must
have been returned leaving it unique as well. Thus, it will be safe
to pull a unique permission from x.f as allowed by the static
rules. At runtime, we will know that x and y are in fact aliases and
do the proper accounting for the permission in field f even when
permission are pulled from the field through different aliases. More
details on this mechanism are given in Section 3.

3. Formal Language
In this section we formalize the ideas developed in the previous
section. We give a syntax, static semantics, and dynamic semantics
for a core language. Then we state the key soundness results, which
are proved in our companion technical report [23].

3.1 Syntax
Figure 7 gives the syntax for the core language. A program consists
of a number of state declarations S and an expression e to evaluate.
A state consists of a state name s, a parent state s′ (possibly
itself), and field and method declarations. Fields F and methods
M are declared in the usual way, except that field types specify
permissions π, and method parameters specify change permissions
π>>π′. Fields have initializer expressions. The change permission
appearing in the method declaration before the method body is the
change permission associated with the implicit parameter this.

The rest of the language features are standard for an expression-
based object-oriented language. The match expression evaluates
e to an object reference and compares its runtime state s′ to the
states s named in the cases. It executes the first case for which s′

is a subtype of s, with a runtime error if there is no match. v.f=e
updates the object in the field v.f to the value of e, which it also
returns as the result of the expression. new s creates an object of
state s and initializes its fields by running the initializer expressions
given in the state definition. The sequence expression evaluates
each of its subexpressions in order and returns the result of the last
one as the value of the whole expression.

Programs P S∗ e
States S state s case of s { F ∗ M∗ }
Fields F T f=e;

Methods M T m(π>>π s x) π>>π { e }
Permissions π unique ∣ none ∣ σ ∣ local σ

σ immutable ∣ shared
Types T π s

Expressions e let π x=e in e ∣ e.m(e) ∣ v ∣ v.f ∣ v.f=e ∣
match(e){(s=>e;)+} ∣ new s ∣ {(e;)+}

Variables v this ∣ x

Figure 7. Core language syntax. s, f , m, and x are identifiers.

3.2 Static Semantics
We introduce our static semantics by formalizing the notions of
states and permissions. We then define the ways that permissions
are manipulated and show how the flow of permissions is integrated
into the type system.
States: States take the place of standard types in our system. Fig-
ure 8 gives the judgments and rules relating to states. P ⊢ s says a
state is valid if it is declared in P . P ⊢ s ⪯ s′ says that s is a sub-
state of s′. Substate relations are defined by the case of relation
from the state definitions, reflexivity, and transitivity.

P ⊢ s

TYPE-STATE
state s case of s

′ { F
∗
M

∗ } ∈ P
P ⊢ s

P ⊢ s ⪯ s′
SUBSTATE
state s case of s

′ { F
∗
M

∗ } ∈ P
P ⊢ s ⪯ s′

SUBTYPE-REFLEXIVE
P ⊢ s ⪯ s

SUBSTATE-TRANSITIVE
P ⊢ s ⪯ s′ P ⊢ s′ ⪯ s′′

P ⊢ s ⪯ s′′

Figure 8. Valid states and substates.

π⇛ π
′ ⊗ π′′

SPLIT-UNIQUE-LOCAL
unique⇛ local σ ⊗ borrow(unique, σ,1)

SPLIT-LOCAL
local σ⇛ local σ ⊗ borrow(local σ,σ,0)

SPLIT-LOCAL-INCREMENT
borrow(π,σ,n)⇛ local σ ⊗ borrow(π,σ,n + 1)

SPLIT-NONE
π⇛ none⊗ π

SPLIT-UNIQUE-SYMMETRIC
unique⇛ σ ⊗ σ

SPLIT-SYMMETRIC
σ⇛ σ ⊗ σ

SPLIT-SYMMETRIC-LOCAL
σ⇛ local σ ⊗ σ

SPLIT-ALL
π⇛ π ⊗ none

Figure 9. Splitting variable permissions.

Permissions: To the set of source permissions we add an additional
form needed to track local permissions so they can be joined
back to unique:

π ∶∶= . . . ∣ borrow(π,σ,n),

where n is a natural number. The borrow permission appears only
in the context for a local variable or field that has had local permis-
sions split from it. Inside borrow, π represents the original permis-
sion before the first split (unique or local σ), σ represents the
kind of local permission borrowed (immutable or shared), and
n counts the number of borrowings.
Splitting variable permissions: The judgment π ⇛ π′ ⊗ π′′ says
that if variable v has permission π, then π′ can be taken out of
v leaving π′′ in v. Figure 9 gives the rules for this judgment. No-
tice that SPLIT-UNIQUE-SYMMETRIC permanently splits unique
into symmetric permissions, making it impossible to ever regain
the unique permission. In contrast, the SPLIT-LOCAL-* rules
pull a local permission and leave behind a borrow permission
which will be turned back into the original permission when all the
local permissions are returned. In these rules, the count is set
to reflect the net gain in local permissions: splitting a local
from a unique generates a new local, so the count starts at
1 (SPLIT-UNIQUE-LOCAL); pulling from an existing local re-
places the original local with a borrow, resulting in no net gain
in local permissions, so the count starts at 0 (SPLIT-LOCAL);
taking a local from an existing borrow creates a new local
and thus increments the count (SPLIT-LOCAL-INCREMENT). Also,
SPLIT-SYMMETRIC-LOCAL says we may pull local σ out of σ.
However, we can’t get a non-local permission out of a local,
so (in conjunction with the FIELD typing rule) we can’t store local
permissions to the heap.
Splitting field permissions: The judgment π1.π2 ⇛ π3 ⊗ π4 says
that if variable v has permission π1, and field v.f has permission
π2, then permission π3 can be taken out of f , leaving π4 behind.

π1.π2 ⇛ π3 ⊗ π4

SPLIT-FIELD-UNIQUE
π⇛ π

′ ⊗ π′′

unique.π⇛ π
′ ⊗ π′′

SPLIT-FIELD-PRESERVE
π ≠ none π

′ ⇛ π
′′ ⊗ π′

π.π′ ⇛ π
′′ ⊗ π′

SPLIT-FIELD-UNIQUE-SYMMETRIC
σ.unique⇛ σ ⊗ unique

SPLIT-FIELD-LOCAL
π⇛ local σ ⊗ π′

local σ.π⇛ local σ ⊗ π′

SPLIT-FIELD-BORROW
π
′ ⇛ local σ ⊗ π′′

borrow(π,σ,n).π′ ⇛ local σ ⊗ π′′

Figure 10. Splitting field permissions.

π ⊗ π′ ⇛ π
′′

JOIN-NOT-UNIQUE
π
′′ ≠ unique π

′′ ⇛ π ⊗ π′

π ⊗ π′ ⇛ π
′′

JOIN-NOT-SYMMETRIC
¬∃σ.(π = σ ∧ π′ = σ) π

′′ ⇛ π ⊗ π′

π ⊗ π′ ⇛ π
′′

Figure 11. Joining permissions.

Figure 10 gives the rules. If the variable permission is unique,
we can split permissions from the field as if it were a variable
(SPLIT-FIELD-UNIQUE), possibly unpacking the field. Otherwise,
we allow splitting in three cases. First, if the variable permission is
not none, then we can do any splitting allowed for variables that
preserves the original field permission (SPLIT-FIELD-PRESERVE).
Second, if the variable permission is σ, then we can take permission
σ out of a unique field v.f without unpacking the object (SPLIT-
FIELD-UNIQUE-SYMMETRIC). This is sound because all other ref-
erences to the object must have permission σ for the remainder
of program execution, and so all other accesses will consistently
see the field with permission σ. Third, if the variable permission is
local or borrow, then we can take a matching local permis-
sion out of a field with unique or borrow permission (SPLIT-
FIELD-LOCAL, SPLIT-FIELD-BORROW). This is sound because
all local permissions to the object and to the field must go out of
scope before a unique permission to the object can be regained.
In the mean time, all references to the object and to the field have
compatible local or borrow permissions.
Joining permissions: The judgment π⊗ π′ ⇛ π′′ says that permis-
sions π and π′ may be joined to form permission π′′. The joining
rules, given in Figure 11, are very simple: we just reverse all the
variable splitting rules, except for SPLIT-UNIQUE-SYMMETRIC,
which can’t be undone.
Linear Context: To track permission flow, our typing rules use a
linear context. It is similar to a standard typing environment, except
that it maps variables to types that include a permission that may
change over the course of typing. The linear context ∆ is defined
as follows, where i is chosen from an arbitrary set of identifiers:

∆ ∶∶= ∅ ∣ v ∶ (T ; Π),∆ Π ∶∶= ∅ ∣ f ∶ (π, i),Π

For each variable v in scope, ∆ stores a type T = π s and a set Π
containing the unpacked state f ∶ (π′, i) of the fields f in the state
s. A field f ∶ (π′, i) ∈ Π records two pieces of information. First, π′

indicates the current permission in the field. f will only appear in
the unpacked state of v if π′ is distinct from the declared permission
of the field f in the state of v. Second, the object identifier i is used
to prevent the restoration of permissions from one object to another
object. For any v ∶ (T ; Π) ∈ ∆ and field f declared in the state

P ; ∆;π ⊢ `∗ ∶ ∆′ RESTORE-EMPTY
P ; ∆;π ⊢ ∶ ∆

RESTORE-VAR
∆ = v ∶ (π′ s; Π),∆′

π ⊗ π′ ⇛ π
′′

P ;v ∶ (π′′ s; Π),∆′
;π ⊢ `∗ ∶ ∆′′

P ; ∆;π ⊢ `∗, v ∶ ∆′′

RESTORE-VAR-ABSENT
¬∃T,Π.(v ∶ (T ; Π) ∈∆)

P ; ∆;π ⊢ `∗ ∶ ∆′

P ; ∆;π ⊢ `∗, v ∶ ∆′

RESTORE-FIELD-PACKED
v ∶ (T ; Π) ∈∆ packed(f,Π) P ; ∆;π ⊢ `∗ ∶ ∆′

P ; ∆;π ⊢ `∗, (v.f, i) ∶ ∆′

RESTORE-FIELD-STALE
v ∶ (T ; Π, f ∶ (π′′, j)) ∈∆ i ≠ j P ; ∆;π ⊢ `∗ ∶ ∆′

P ; ∆;π ⊢ `∗, (v.f, i) ∶ ∆′

RESTORE-FIELD-UNPACKED
∆ = v ∶ (π s; Π, f ∶ (π2, i)),∆′ field-type(P, s, f) = π

′
s
′

π1 ⊗ π2 ⇛ π3 π3 ≠ π′ P ;v ∶ (π s; Π, f ∶ (π3, i)),∆′
;π1 ⊢ `∗ ∶ ∆′′

P ; ∆;π1 ⊢ `∗, (v.f, i) ∶ ∆′′

RESTORE-FIELD-PACK
∆ = v ∶ (π s; Π, f ∶ (π2, i)),∆′ field-type(P, s, f) = π3 s

′

π1 ⊗ π2 ⇛ π3 P ;v ∶ (π s; Π),∆′
;π1 ⊢ `∗ ∶ ∆′′

P ; ∆;π1 ⊢ `∗, (v.f, i) ∶ ∆′′

Figure 12. Restoring permissions. The predicate packed(f,Π) is
true if no binding for f appears in Π. field-type(P, s, f) = T says
that field f is defined in state s with type T in the program P .

of v, if there exists f ∶ (π, i) ∈ Π, then we say “the field f of v
is unpacked”; otherwise we say “the field f of v is packed.” By
extension, if Π = ∅, then we say the object pointed to by v (or just
v) is packed; otherwise it is unpacked.
Restoring Permissions: At certain points in the typing, permis-
sions flow back into the linear context, such as when a let-bound
variable goes out of scope. We restore permissions to a source lo-
cation list consisting of zero or more elements `:

` ∶∶= v ∣ (v.f, i).

Each element ` stores a location to restore to (either a variable v or
a field v.f). For fields v.f , the identifiers i ensure that we restore
permissions only to fields that have not been assigned to since the
permission was taken out. We use a list because match expressions
may report different source locations for each case. However, we
do not allow duplicates in the list.

The judgment for restoring permissions is P ; ∆;π ⊢ `∗ ∶ ∆′. It
says that if we start with context ∆ and join permission π with the
permission in each location in `∗, then we get a new context ∆′.
Figure 12 gives the rules for this judgment. If the next element in
the source location list is a variable appearing in the context, then
we restore the permission to it (RESTORE-VAR). Because we do
not check that all of the locations in a source location list remain
valid when passed outside of a let scope, it is possible that the
variable may not be in the context to return to, in which case we
do nothing (RESTORE-VAR-ABSENT).

When restoring to a field, there are several cases to consider.
If the field is already packed, this means that pulling the per-
mission did not unpack the field (left it unchanged) or the field
was reassigned since the permission was pulled, so we do noth-
ing (RESTORE-FIELD-PACKED). If the field is unpacked, and the
identifiers in the context and the source location don’t match, then
we also do nothing (RESTORE-FIELD-STALE). This occurs when
an expression in an inner scope assigns to the field and then later
unpacks it again, meaning the returned permission represents a per-
mission to a different object than is in the field.

∆3 = merge(∆1,∆2)
MERGE-PACKED

π1 ⇛ π3 ⊗ π2

v ∶ (π2 s,∅) = merge(v ∶ (π1 s,∅), v ∶ (π2 s,∅))

MERGE-ONE-UNPACKED
Π ≠ ∅ π1 ⇛ π3 ⊗ π2

v ∶ (π2 s,Π) = merge(v ∶ (π1 s,∅), v ∶ (π2 s,Π))

MERGE-UNPACKED-EQUAL
v ∶ (π1 s,Π3) = merge(v ∶ (π1 s,Π1), v ∶ (π1 s,Π2)) π1.π2 ⇛ π4 ⊗ π3

v ∶ (π1 s,Π3 ∪ f ∶ (π3, i)) = merge(v ∶ (π1 s,Π1 ∪ f ∶ (π2, i)), v ∶ (π1 s,Π2 ∪ f ∶ (π3, i))

MERGE-UNPACKED-UNEQUAL
v ∶ (π1 s,Π3) = merge(v ∶ (π1 s,Π1), v ∶ (π1 s,Π2)) π1.π2 ⇛ π4 ⊗ π3 i1 ≠ i2 fresh(i3)

v ∶ (π1 s,Π3 ∪ f ∶ (π3, i3)) = merge(v ∶ (π1 s,Π1 ∪ f ∶ (π2, i1)), v ∶ (π1 s,Π2 ∪ f ∶ (π3, i2))

Figure 13. Merging contexts in typing match (selected rules).

If f is unpacked, and the identifiers match, then there are two
cases. First, if restoring the permission doesn’t leave a permission
equal to the declared permission for f , then we update the unpacked
state (RESTORE-FIELD-UNPACKED). Otherwise we pack up the
field (RESTORE-FIELD-PACK) by removing it from Π. Notice we
don’t consider the case where v.f appears in the location list but
v doesn’t appear in the context. Why not? There are two ways
this could happen: either v.f is returned as the value of the let
expression that declares v, or v.f is returned as the value of a
method body, where v is this or the method formal parameter.
In either case v must be packed after the evaluation of v.f (rules
METHOD in Figure 15 and LET in Figure 14). Therefore, v.f can
not appear in the source location list (see rule FIELD-ACCESS-
PACKED in Figure 14).
Merging Contexts: Each case in a match expression may up-
date the permissions in the context in a different way. The merge
judgment from Figure 13 defines how to combine two contexts into
a more general context that can be soundly used to type subsequent
expressions regardless of which case is actually executed. We pro-
vide only the important rules for merging contexts ∆1 and ∆2; the
rest of the rules are about pulling apart the contexts and comparing
elements. In summary we use the following rules for merging the
two context entries for a variable v:

1. If v is packed in both ∆1 and ∆2 (MERGE-PACKED), then we
choose the weaker permission. The weaker permission is the
one which can be defined as the residue after some permission
is split from the stronger permission. If such a split does not
exist, then the contexts are inconsistent and the typing fails.

2. If v is unpacked in both contexts, then we require it to have the
same permission in both, and we use the field splitting rules to
find the weaker of the two field permissions. If the identifier i
associated with the unpacked field is the same in both contexts,
then we pass it through (MERGE-UNPACKED-EQUAL), but if it
is different we generate a fresh identifier (MERGE-UNPACKED-
UNEQUAL). This is correct but conservative because it guaran-
tees that no permission restore will occur to the location.

3. If v is unpacked in only one context (MERGE-ONE-UNPACKED),
then we use the unpacked element, but we check that the un-
packed permission for v is weaker than the packed one. Other-
wise, we would have to pull a permission out of an unpacked
object, which is not allowed in this language.

Expressions: Permissions are pulled out of the linear context by
typing expressions. The judgment P ; ∆;π ⊢ e ∶ s; ∆′; `∗ takes
the starting context ∆, a needed permission π, and an expression e
that specifies where π could be pulled from. It produces the state
s of the expression, an updated context ∆′, and a source location
list `∗ that contains all the possible locations in the context that
the permission π may have been pulled from. The exact location is
not statically known because which branch of a match expression

is executed is determined at runtime. Figure 14 gives the rules for
typing expressions which we now summarize.
Let: We use the permission π′ declared for x to type e, obtaining
state s, a context ∆′, and a source location list `∗. Then we use
the needed permission π of the whole expression to type e′ in the
context ∆′ augmented by the type binding for x. This produces
an updated context ∆′′ where x is left with permission π′′, and
a source location list `′∗. We require that x be packed because it
is going out of scope. We restore π′′ to `∗, the locations that the
permission for x may have been pulled from, which generates a
final context ∆′′′ that is returned along with the state and source
locations from the body.
Match: For a single-case match, we type e with a needed permis-
sion none yielding some state s and an updated context ∆′. We
disregard the source location lists since returning none is a no-op.
We ensure that the state s has a common superstate with the state sc
named in the case. This ensures that sc is a potentially valid state
of e. Using ∆′ and the needed permission for the entire expression,
we type e′ to get the state s′ and source location list `∗ which are
reported as the result of the case. For a multiple-case match, we
recursively check the match with all but the first case. Then we
check the match with the remaining case in isolation using the
original context. Finally, we return the the least upper bound of the
resulting states, the merged contexts, and the union of the source
location lists from the first case and the remaining cases.
Method invocation: We type e in the input context with needed
permission π1 yielding a state s1 and a context ∆2.3 Next we look
up the method named m in state s1. This gives us the permission
π2 required for the argument. We use π2 to type e′ in the context
∆2, which yields a state s′2 and a context ∆3. Now we check that
s′2 conforms to the method parameter state s2. Then we check
that needed permission π can be extracted from the permission
π3 returned by the method. We generate the output context ∆5

by restoring the output permissions specified for the argument and
receiver in the method signature to their respective source location
lists. The outgoing source location list is empty because our system
does not track what locations the permissions returned from method
calls can come from.
Variables: We require that v is packed, because its value may be
assigned to another variable or stored on the heap. We also check
that the existing permission can be split to give the needed permis-
sion, and we leave the residue in the type reported in the outgoing
context. The source expression list contains only the variable itself.
Field access: We start by finding the type of v in the context and
then get the defined type of field f in its state s. Since we are only
accessing the field of v, we do not update the permission of v.
However, we may need to update the unpacked state of f in v. If f

3 π1 is the needed permission for the receiver as determined by the signature
of the method m in the state s1 of the expression e. This permission can
be determined by a pre-pass that ignores permissions and just gathers state
information for all variables.

P ; ∆;π ⊢ e ∶ s; ∆
′
; `
∗

LET
P ; ∆;π

′ ⊢ e ∶ s; ∆
′
; `
∗

P ; ∆
′
, x ∶ (π′ s;∅);π ⊢ e′ ∶ s′; ∆

′′
, x ∶ (π′′ s;∅); `′∗ P ; ∆

′′
;π

′′ ⊢ `∗ ∶ ∆′′′

P ; ∆;π ⊢ let π
′
x = e in e

′ ∶ s′; ∆
′′′

; `
′∗

MATCH-SINGLE
P ; ∆;none ⊢ e ∶ s; ∆

′
; `
∗

∃sl.P ⊢ sl = lub(s, sc) P ; ∆
′
;π ⊢ e′ ∶ s′; ∆

′′
; `
′∗

P ; ∆;π ⊢ match(e){sc=>e′;} ∶ s′; ∆
′′
; `
′∗

MATCH-MULTIPLE
P ; ∆;π ⊢ match(e){(sc=>e1;)+} ∶ s1; ∆1; `1

∗

P ; ∆;π ⊢ match(e){s′c=>e2;} ∶ s2; ∆2; `2
∗

P ⊢ s3 = lub(s1, s2) ∆3 = merge(∆1,∆2) `
∗
3 = `

∗
1 ∪ `

∗
2

P ; ∆;π ⊢ match(e){(sc=>e1;)+ s
′
c=>e2;} ∶ s3; ∆3; `

∗
3

INVOKE
P ; ∆1;π1 ⊢ e ∶ s1; ∆2; `

∗

method(P, s1,m) = π3 s3 m(π2>>π
′
2 s2 x) π1>>π

′
1 { e

′′ } P ; ∆2;π2 ⊢ e′ ∶ s′2; ∆3; `
′∗

P ⊢ s′2 ⪯ s2 π3 ⇛ π ⊗ π′ P ; ∆3;π
′
2 ⊢ `

′∗ ∶ ∆4 P ; ∆4;π
′
1 ⊢ `

∗ ∶ ∆5

P ; ∆1;π ⊢ e.m(e′) ∶ s3; ∆5;∅

VAR
∆ = ∆

′
, v ∶ (π′ s;∅)

π
′ ⇛ π ⊗ π′′ ∆

′′
= ∆

′
, v ∶ (π′′ s;∅)

P ; ∆;π ⊢ v ∶ s; ∆
′′
;v

FIELD-ACCESS-PACKED
v ∶ (π′ s; Π) ∈∆ packed(f,Π)

field-type(P, s, f) = π
′′
s
′

π
′.π′′ ⇛ π ⊗ π′′

P ; ∆;π ⊢ v.f ∶ s′; ∆;∅

FIELD-ACCESS-UNPACK
∆ = ∆

′
, v ∶ (π1 s; Π) packed(f,Π) field-type(P, s, f) = π2 s

′

π1.π2 ⇛ π3 ⊗ π4 π2 ≠ π4 fresh(i) ∆
′′

= ∆
′
, v ∶ (π1 s; Π, f ∶ (π4, i))

P ; ∆;π3 ⊢ v.f ∶ s′; ∆
′′
; (v.f, i)

FIELD-ACCESS-UNPACKED
∆ = ∆

′
, v ∶ (π1 s; Π, f ∶ (π2, i)) field-type(P, s, f) = π3 s

′

π1.π2 ⇛ π4 ⊗ π5 ∆
′′

= ∆
′
, v ∶ (π1 s; Π, f ∶ (π5, i))

P ; ∆;π4 ⊢ v.f ∶ s′; ∆
′′
; (v.f, i)

FIELD-ASSIGN-PACKED
v ∶ (π1 s1; Π) ∈∆ field-type(P, s1, f) = π2 s2

P ; ∆;π2 ⊢ e ∶ s3; ∆
′
; `
∗

v ∶ (π3 s1; Π
′) ∈∆

′ assignable(π3)
packed(f,Π′) P ⊢ s3 ⪯ s2 π2 ⇛ π ⊗ π2 ∆

′′′
= ∆

′′
, v ∶ (π3 s1; Π

′)
P ; ∆;π ⊢ v.f=e ∶ s3; ∆

′′′
;∅

FIELD-ASSIGN-UNPACKED
v ∶ (π1 s1; Π) ∈∆ field-type(P, s1, f) = π2 s2 P ; ∆;π2 ⊢ e ∶ s3; ∆1; `

∗

∆1 = ∆2, v ∶ (π3 s1; Π
′
, f ∶ (π4, i)) assignable(π3) P ⊢ s3 ⪯ s2 π2 ⇛ π ⊗ π2 ∆3 = ∆2, v ∶ (π3 s1; Π

′)
P ; ∆;π ⊢ v.f=e ∶ s3; ∆3;∅

NEW
P ⊢ s

P ; ∆;π ⊢ new s ∶ s; ∆;∅

SEQUENCE-SINGLE
P ; ∆;π ⊢ e ∶ s; ∆

′
; `
∗

P ; ∆;π ⊢ {e;} ∶ s; ∆
′
; `
∗

SEQUENCE-MULTIPLE
P ; ∆;none ⊢ {(e;)+} ∶ s; ∆

′
; `
∗

P ; ∆
′
;π ⊢ {e′;} ∶ s′; ∆

′′
; `
′∗

P ; ∆;π ⊢ {(e;)+ e
′;} ∶ s′; ∆

′′
; `
′∗

Figure 14. Typing expressions. P ⊢ s = lub(s′, s′′) means s is the least state that is a superstate of both s′ and s′′. method(P, s,m) =
M means that M is the method named m defined in state s for program P , and field-type(P, s, f) = T similarly produces the
type T of field f from s in P . The predicate assignable(π) holds if π is not none, immutable, local immutable, or
borrow(local immutable,immutable, n). packed(f,Π) means ¬∃(π, i).(f ∶ (π, i) ∈ Π).

starts packed in v’s type, then there are two cases to handle. First,
if we can take the required permission out of the field and leave the
same permission behind, then we leave the object packed (FIELD-
ACCESS-PACKED). The source expression list is empty because no
permission needs to be restored to a field that is packed. Second,
if we need to leave a different residual permission, then we unpack
the field, leaving the residual permission behind (FIELD-ACCESS-
UNPACK). We also generate a fresh identifier i and report (v.f, i)
as the source location list. If f is already unpacked in v, then
we split the needed permission from the current field permission,
and replace the current permission in the unpacked field state with
the residual permission (FIELD-ACCESS-UNPACKED). We report
(v.f, i) as the source location, using the existing identifier i.
Field assignment: If v.f is packed, then to assign e to it we (1)
look in the context to get the permission we need for the field;
(2) type e; (3) check that we have writable permission to v in
the resulting context; and (4) check that the states match (FIELD-
ASSIGN-PACKED). We also ensure that the permission we need can
be split off from the permission needed by the field, while retaining
the field permission. If v.f is unpacked, then we do the same thing,
but we pack up f at the end (FIELD-ASSIGN-UNPACKED). In both
cases, we do not need to return permissions to the source locations
of e because what’s left after assigning to v.f must be none or
symmetric and returning either is a no-op. For the same reason, the
returned source location list is empty.

Object creation and expression sequence: These rules are straight-
forward. In SEQUENCE-MULTIPLE, notice that we pull the needed
permission only for the last element in the sequence, whose value is
returned by evaluating the expression; we pull none from the rest
of the expressions in the sequence. For example, if x is unique,
it is legal to request a unique permission from the expression
{x;x;x;}, because unique is only pulled from the last x. Since
returning a none permission is a no-op, we can safely discard the
source location lists for these expressions.
Top-Level Program Structure: Figure 15 gives the rules for typ-
ing programs, states, fields, and methods. In rule PROGRAM we
type the main expression with a needed permission none, because
no permission to the result is needed after program execution is
complete. In rule FIELD we type the initializer expression in the
empty environment to ensure that this isn’t stored to the heap by
a new expression. Also, we require that user-declared field types
cannot be declared with local permissions (borrow permissions
are also excluded because they cannot appear in the source). This
restriction ensures that a local permission is never assigned to the
heap. In rule METHOD we check that the return type and parame-
ters are valid. We check that the method body types in the context
created by binding the method receiver and parameter to their types
and that the resulting state is a substate of the return state. We re-
quire that the parameter and receiver be packed in the the output
context ∆′ and also that their permissions in ∆′ agree with the out-
put permissions given by their change types.

⊢ P

PROGRAM
P = S

∗
e ∀S ∈ S∗.(P ⊢ S)

P ;∅;none ⊢ e ∶ s;∅; `
∗

⊢ P P ⊢ S

STATE
state s

′ case of s
′′ { F

′∗
M

′∗ } ∈ P
∀F ∈ F ∗

.(P ⊢ F) ∀M ∈M∗
.(P, s ⊢M)

P ⊢ state s case of s
′ { F

∗
M

∗ }

P ⊢ F

FIELD
T = π s P ⊢ s ¬∃σ.(π = local σ)

P ;∅;π ⊢ e ∶ s′;∅; `
∗

P ⊢ s′ ⪯ s
P ⊢ T f=e; P, s ⊢M

METHOD
P ⊢ s P ⊢ s2

∆ = this ∶ (π1 s1;∅), x ∶ (π2 s2;∅) P ; ∆;π ⊢ e ∶ s′,∆′
; `
∗

this ∶ (π′1 s1;∅), x ∶ (π′2 s2;∅) ∈∆
′

P ⊢ s′ ⪯ s
P, s1 ⊢ π s m(π2>>π

′
2 s2 x) π1>>π

′
1 { e }

Figure 15. Programs, states, fields, and methods.

For simplicity, we implicitly disallow overriding, shadowing,
and/or overloading of fields and methods. We also disallow cycles
in the inheritance hierarchy and treat the set of states as a forest of
trees, where a state s is a root if it has itself as a parent.

3.3 Dynamic Semantics
An execution state H; e includes a heap H and an expression e.
Heap: Our model of the heap H is a partial function from object
references to object identifiers and from object identifiers to ob-
jects. The addition of object references provide an additional level
of indirection that allows us to explicitly track and reason about dif-
ferent aliases to a single object as in [28]. These serve a formal pur-
pose only and are not necessary in an implementation. Consistent
with this indirection, the fields of an object dF ∗ map field names
to object references. Every object reference in dom(H) maps to
an object identifier except the special reference null, which is used
during object initialization.

H ∶∶= null ∣ o↦ O,H ∣O ↦ s{dF ∗},H
dF ∶∶= f ↦ o

Expressions: We enhance our expression language to support
partially-executed programs. We add object references o as well as
the new form alias(o) as expressions. alias(o) gives com-
putational meaning to splitting a permission of o by creating a new
alias to hold the split permission. As alias expressions will be
substituted for bound variables in let bodies, we allow them to ap-
pear wherever variables can. Finally, we add a partial let form that
keeps track of the scope in which an object reference o is bound.

e ∶∶= . . . ∣ o ∣ alias(o) ∣ alias(o).f ∣ alias(o).f = e ∣
let o in e

Reduction Rules: We formalize program execution using a small
step operational semantics. Given a program P , the reduction rules
shown in Figure 16 take one execution state to another.
Congruence: We specify reduction of subexpressions using an eval-
uation context E defined below:

E ∶∶= ◻ ∣ let π x=E in e ∣ let o in E ∣
match(E){(s=>e;)+} ∣E.m(e) ∣
o.m(E) ∣ alias(o).f=E ∣ {E; (e;)∗}

As usual, ◻ is a “hole” that is filled in with the subexpression under
evaluation to construct the entire expression being evaluated.
Alias: Reducing an alias(o) expression creates a fresh object
reference that points to the same object identifier as the original
object reference.
Let: Once the bound expression is reduced to an object reference o
we substitute alias(o) for all occurrences of the bound variable
x in the body. Thus, any use of x in the body must create a fresh
alias. We also keep track of the scope of o by reducing to the partial
let form. Once the body of a partial let has been evaluated to an
object reference we remove the scoping annotation.

Match: Once the selector expression becomes an object reference
o, we select the first match case, if any, that is a superstate of the
state of o. If there is no match, then execution gets stuck.
Method invocation: Once we have object references for the receiver
and argument of the method, we substitute the method body sur-
rounded by let expressions binding the receiver and argument. This
allows let reduction to handle the substitution and scoping.
Object creation: We create a new object identifier O and give its
fields the reference null, which will be replaced by the proper
values after running the initializer expressions. We reduce to a
sequence expression which initializes each field of the object in
turn through a fresh object reference o. The final expression in the
sequence returns o.
Field access and assignment: A field access evaluates to a fresh
alias to the object reference the heap associates with the field. Field
assignment replaces the object reference in the field with object
reference from evaluating the right-hand side. It returns a fresh alias
of this same reference. Since we do not use the target of the field
read or assignment except to access its field, we do not need a new
alias to it, so we leave the alias(o) in the target unevaluated.
Sequence: Each expression in the sequence is evaluated in order
until there are no further expressions at which point the sequence is
reduced to the object reference resulting from the reduction of the
final expression.

3.4 Soundness Results
In this section, we present the main soundness results and support-
ing definitions for our system. Our technical report [23] contains
the full definitions and proofs.
Typing of Dynamic Expressions: We state and prove soundness
in terms of a standard dynamic typing. To do this, we need rules for
typing object references, alias expressions, and partial lets.

First, we enhance the definition of the linear context to map
object references to types. We also add entries of the form ` ⇐ o
to the context which indicate that o returns its permission to the
source location ` when it leaves scope. We will also want to be
able to return permissions to object references, so we extend the
definition of source locations to include them.

∆ ∶∶= . . . ∣ o ∶ (π s,Π), ∆ ∣ `⇐ o, ∆
` ∶∶= . . . ∣ o ∣ (o.f ,i)

The rules for typing partial expressions are found in Figure 17.
The ALIAS rule says that typing alias(o) proceeds by typing o
like a variable. In particular, the source location is o. A raw object
reference o is typed using rule OBJECT-REF which is also similar
to the VAR rule with two important exceptions. First, we look in the
context to find the return location specified for o. This is because
we need to maintain the typing after an alias expression steps
to an object reference. In particular, after alias(o) steps to o′,
typing o′ should still return o as the source location. Second, the
binding for the type of o is removed from the outgoing context to
ensure that o is not used later in the program which would break

P ⊢H; e→H
′
; e
′

E-CONGRUENCE
P ⊢H; e→H

′
; e
′

P ⊢H;E[e]→H
′
;E[e′]

E-ALIAS
H = H

′
, o↦ O o

′ /∈ dom(H) H
′′

= H,o
′ ↦ O

P ⊢H;alias(o)→H
′′
;o
′

E-LET-BINDING

P ⊢H;let π x = o in e→H;let o in e[x← alias(o)]

E-LET-BODY
H = H

′
, o↦ O

P ⊢H;let o in o
′ →H

′
;o
′

E-MATCH
H = H

′
, o↦ O

O ↦ s{dF ∗} ∈H′
P ⊢ s ⪯ sj ¬∃k ∈ [1, j − 1].(P ⊢ s ⪯ sk)

P ⊢H;match o {(si ⇒ ei)i∈[1,n]}→H
′
; ej

E-INVOKE
H = H

′
, o↦ O,O → s{dF ∗}

method(P, s,m) = π3 s m(π2>>π
′
2 s

′
x) π1>>π

′
1 { e }

P ⊢H;o.m(o′)→H;let π1 this=o in let π2 x=o′ in e

E-FIELD
H = H

′
, o↦ O,O ↦ s{dF, f ↦ o

′}, o′ ↦ O
′

o
′′ /∈ dom(H) H

′′
= H,o

′′ ↦ O
′

P ⊢H;alias(o).f →H
′′
;o
′′

E-ASSIGN
H;alias(o′)→H

′
;o
′′

H
′
= H

′′
, o↦ O,O ↦ s{dF ∗

, f ↦ o
′′′}

H
′′′

= H
′′
, o↦ O,O ↦ s{dF ∗

, f ↦ o
′}

P ⊢H;alias(o).f=o′ →H
′′′

;o
′′

E-NEW
state s case of s

′ { (πi si fi=ei)i∈[1,n] M∗ } ∈ P
o,O /∈ dom(H) H

′
= H,o→ O,O ↦ s{(fi ↦ null)i∈[1,n]}

P ⊢H;new s→H
′
;{(alias(o).fi = ei;)i∈[1,n] o;}

E-SEQUENCE-SINGLE

P ⊢H;{o;}→H;o

E-SEQUENCE-MULTIPLE
H = H

′
, o↦ O

P ⊢H;{o; (e;)+}→H
′
;{(e;)+}

Figure 16. Reduction rules.

ALIAS
∆ = ∆

′
, o ∶ (π′ s;∅) π

′ ⇛ π ⊗ π′′ ∆
′′

= ∆
′
, o ∶ (π′′ s;∅)

P ; ∆;π ⊢ alias(o) ∶ s; ∆
′′
;o

OBJECT-REF
∆ = ∆

′
, o ∶ (π′ s;∅), `⇐ o π

′ ⇛ π ⊗ π′′ ∆
′′

= ∆
′
, `⇐ o

P ; ∆;π ⊢ o ∶ s; ∆
′′
; `

ALIAS-FIELD-ACCESS
x /∈ dom(∆) P ; ∆, x ∶ (π′ s′,Π′);π ⊢ x.f ∶ s; ∆, x ∶ (π′ s′,Π′′); `∗

P ; ∆, o ∶ (π′ s′,Π′);π ⊢ alias(o).f ∶ s; ∆, o ∶ (π′ s′,Π′′); `∗[x← o]

ALIAS-FIELD-ASSIGN
x /∈ dom(∆) P ; ∆, x ∶ (π′ s′,Π′);π ⊢ x.f = e ∶ s; ∆

′
, x ∶ (π′′ s′,Π′′);∅

P ; ∆, o ∶ (π′ s′,Π′);π ⊢ alias(o).f = e ∶ s; ∆
′
, o ∶ (π′′ s′,Π′′);∅

LET-PARTIAL
∆ = ∆

′
, o ∶ (π′ s′,Π′), `⇐ o P ; ∆;π ⊢ e ∶ π s; ∆

′′
, o ∶ (π′′ s′,∅), `⇐ o; `

∗
P ; ∆

′′
, π

′′ ⊢ ` ∶ ∆′′′

P ; ∆;π ⊢ let o in e ∶ s; ∆
′′′

; `
∗

Figure 17. Intermediate Typing Rules.

our model of execution where each variable and field is tracked
as a separate object reference. To type a field read or assignment
after an alias has been substituted for the target variable ALIAS-
FIELD* undoes the substitution with a fresh variable x that replaces
alias(o). We give x the type of o from the context when typing
the updated expression and then return the resulting outputs with o
put back for x in the context and source location list. LET-PARTIAL
assumes the scoped object reference o is already in the context
along with a return location for it. After the body is typed, the
remaining permission to o is restored to its return location.
Soundness Judgments: Figure 18 shows the soundness judgments
for the system. P ; ∆;π ⊢ H; e ∶ π s; ∆̂; `∗ is the top-level judg-
ment and says that the runtime environment H; e is well-typed
with respect to a a program P , a context ∆, and a permission π.
The premises of this judgment are as follows. First, the context and
the heap must map the same set of object references. Second, the
incoming context must be able to be partitioned into two distinct
parts: ∆e to type the expression (which produces the outputs of
the judgment), and ∆f which contains all of the object references
stored in fields f in H . Third, three invariants must hold for the
context and the heap: (1) consistent object permissions, (2) consis-
tent object references, and (3) distinct fields.
Consistent object permissions: The key soundness condition of our
system is that for each O, the set of references o that point to it
must have consistent permissions in ∆. This condition captures the
meaning of the permissions in our system. Figure 19 defines this

consistency condition. The judgment perms(∆,H,O) = [π∗]
forms the list of all the permissions π given to object references
o that point to O in H . The judgment [π∗] consistent places
three requirements on this list: (1) if unique appears in the list,
then it appears only once, and all other permissions are none;
(2) if a borrow(unique, σ, n) permission appears in the list, then
the number of local σ permissions must match the sum of the
counts of all borrow permissions in the list; and (3) no list may
contain both shared and immutable permissions (including the
local and borrow versions).
Consistent object references: Object references must also be inter-
nally consistent. We say that P ; ∆;H ⊢ o ok if the representation
of the object reference o in H is consistent with the type of o in ∆.
For the representation to be valid, we first need for the actual states
of the object and its fields to be substates of the states given by the
type of o. Second, we need to ensure that any permission that can be
statically pulled from a field f of the state s through o can also be
pulled from the permission of the object reference that represents
the field in H . Given the field type πo.πf of f in o, we say that πr

fulfills πo.πf (represented by πr ▷ πo.πf) if any permission that
can be split from πo.πf can also be split from πr . Both judgments
are formalized in Figure 18.
Distinct fields: In order to carry out the typing of a partially eval-
uated expression we must ensure that no object reference o ever
appears (1) both in a field and in the expression being typed or (2)
in two different fields in H . Otherwise, typing one location could
have a non-local impact on the permission in the other location that

P ; ∆;π ⊢H; e ∶ π s; ∆̂; `
∗

ENV-OK
{o ∣ o ∈ dom(H)} = {o ∣ o ∈ dom(∆)} ∆ = ∆e,∆f P ; ∆e;π ⊢ e ∶ π s; ∆̂; `

∗
∆f ⊢H distinct fields

∀o ∈ dom(H). (P ; ∆;H ⊢ o ok) ∀O ∈ dom(H). (perms(∆,H,O) consistent)
P ; ∆;π ⊢H; e ∶ π s; ∆̂; `

∗

P ; ∆;H ⊢ o ok

OBJ-REF-OK
o ∶ (π s,Π) ∈∆ o↦ O,O ↦ s

′{dF ∗} ∈H P ⊢ s′ ⪯ s

∀f ∈ fields(P, s).(f ↦ of ∈ dF ∗ ∧ πf sf = dyn-field-type(P, s, f,Π) ∧
of ∶ (π′f s

′
f ,Πf) ∈∆ ∧ P ⊢ s′f ⪯ sf ∧ π

′
f ▷ π.πf

)

P ; ∆;H ⊢ o ok

π▷ πo.πf

FIELD-FULFILLED
∀π̂ ∈ {πs∣∃π′. πo.πf ⇛ πs ⊗ πr}.∃π̂′.π⇛ π̂ ⊗ π̂′

π▷ πo.πf

∆ ⊢H distinct fields

DISTINCT-FIELDS
O ↦ s{dF ∗

, f ↦ o} ∈H ∧O′ ↦ s
′{dF ′∗

, f
′ ↦ o} ∈H Ô⇒ o ∈ dom(∆) ∧O = O

′ ∧ f = f
′

∆ ⊢H distinct fields

Figure 18. Soundness judgments. dyn-field-type(P, s, f,Π) reports the permission for f in Π if it is recorded there, otherwise the declared
permission of f in the definition of state s.

perms(∆,H,O) = [π∗]
PERMS-NO-MATCH
¬∃o ∈ dom(H).o↦ O ∈H

perms(∆,H,O) = []

PERMS-MATCH
H = o↦ O,H

′
o ∶ (π s,Π) ∈∆ perms(∆,H′

,O) = [π′∗]
perms(∆,H,O) = [π]++[π′∗]

[π∗] consistent
C-UNIQUE

[(none)∗] ++ unique consistent

C-BORROWUNIQUE
L = [(local σ)∗]

B = [(borrow(local σ,σ,ni))i∈[1,m]] m ≥ 0 n
′ +

m

∑
i=1

ni = ∣L∣

[(none)∗] ++ L ++B ++ [borrow(unique, σ,n′)] consistent

C-GENERAL
L = [(local σ)∗] B = [(borrow(local σ,σ,n))∗]

[(none)∗] ++ L ++ [(σ)∗] ++B consistent

Figure 19. Permission lists and consistent permissions. The nota-
tion L = [π∗] means that L is a list of permissions (with duplicates
allowed). The symbol ++ denotes list concatenation.

would be difficult to track. This invariant is captured formally by
the judgment ∆ ⊢H distinct fields in Figure 18.
Context Splitting: As an expression is evaluated, more definite in-
formation about the execution state becomes available for use by
the typing rules. For instance, after reducing away a match expres-
sion the needed permission may be pulled from fewer locations in
the context, leaving the resulting context stronger than before the
reduction. We introduce the concept of context splitting to account
for this increase in permissions in the output context.

The judgment P ⊢ ∆1 ⇒ ∆2 shown in Figure 20 states that
∆1 splits into ∆2. The judgment holds if we can transform ∆1 into
∆2 by doing one or both of the following to each location (variable
or field) appearing in both ∆1 and ∆2: (1) pull a permission out
of the location in ∆1 such that the residue is the permission of the
location in ∆2; and (2) replace the state of the location in ∆1 with
the superstate from ∆2. The helper judgments P ⊢ ∆1 ⇒ ∆2@v
and P ⊢ ∆1 ⇒ ∆2@v.f define these operations formally for
variables and fields.

P ⊢∆1 ⇒∆2

CTX-SPLIT

∀v ∶ (π s,Π) ∈∆2.(
P ⊢∆1 ⇒∆2@v ∧
∀f ∈ fields(P, s).P ⊢∆1 ⇒∆2@v.f

)

P ⊢∆1 ⇒∆2

P ⊢∆1 ⇒∆2@v

CTX-SPLIT-VAR
v ∶ (π1 s

′
,Π1) ∈∆1 v ∶ (π2 s,Π2) ∈∆2 ∃π̂.(π1 ⇛ π̂ ⊗ π2)

P ⊢ s′ ⪯ s
P ⊢∆1 ⇒∆2@v

P ⊢∆1 ⇒∆2@v.f

CTX-SPLIT-FIELD
v ∶ (π1 s

′
,Π1) ∈∆1 v ∶ (π2 s,Π2) ∈∆2

∃π̂.(fieldPerm(P, s′, f,Π1)⇛ π̂ ⊗ fieldPerm(P, s, f,Π2)) P ⊢ s′ ⪯ s
P ⊢∆1 ⇒∆2@v.f

Figure 20. Context splitting.

Progress and Preservation: We use these definitions to state the
soundness of our system via standard progress and preservation
theorems.

Theorem 3.1 (Progress). If P ; ∆;π ⊢H; e ∶ π s; ∆̂; `∗, then either
e = o or P ⊢ H; e → H ′; e′ or execution is stuck at a match
statement where the matched expression has been evaluated to an
object, but there is no matching case.

Theorem 3.2 (Preservation). If P ; ∆;π ⊢ H; e ∶ π s; ∆̂; `∗, and
P ⊢H; e→H ′; e′, then ∃∆′ such that

1. P ; ∆′;π ⊢ H ′; e′ ∶ π s′; ∆̂′, `′∗ where P ⊢ ∆̂′ ⇒ ∆̂ and
P ⊢ s′ ⪯ s

2. P, ∆̂, π ⊢ (`∗ ∖ `′∗) ∶ ∆̂r where P ⊢ ∆̂′ ⇒ ∆̂r

The first condition of preservation requires that the new envi-
ronment after reduction is still well-formed, with the extra restric-
tion that the context ∆̂′ generated by typing the updated expression
e′ must split into the context ∆̂ produced by typing the original
e. However, this is not strong enough because it does not account
for the permissions that were pulled out as a part of typechecking

which may be returned to the context later. The second condition
provides the extra power we need. Consider the source location list
`∗∖`′∗ representing all the source locations from which the needed
permission π was pulled when typing e but that were not used to
get π when typing e′. There is potentially more permission at these
locations in ∆̂′ than in ∆̂ because π was not split from them during
the typing of e′. However, are we guaranteed that if we restore the
pulled permission to these locations in ∆̂ using the judgment de-
fined in Figure 12, the resulting context ∆̂r can still be split from
∆̂′? The second condition of preservation says, “Yes.” This fact
is necessary to prove the splitting condition on ∆̂′ from the first
condition in some cases such as when E-CONGRUENCE is used to
reduce a let expression. This and other details of the proofs of
these theorems are discussed in our accompanying technical report
[23].

4. Related Work
Wadler first introduced the concept of temporarily converting a
linear (unique) reference into a non-linear reference using the
let! construct [27]. Other early uniqueness type systems built
on his work and added support for borrowing as a special anno-
tation, such as “borrowed” or “lent” [1, 19, 22]. While convenient,
these systems did not support borrowing immutable pointers, and
generally provided weak guarantees: multiple borrowed pointers
could co-exist and interfere with one another. Boyland devised alias
burying to address this issue, using shape analysis to ensure that
whenever a unique variable was read, all aliases to it were dead
(or “buried”) [7]. While this approach works well in an analysis
tool, it is inappropriate for a type system: programmers would have
to understand a shape analysis to comprehend and fix a type er-
ror message. The authors of Plural [3], which also uses analysis to
support borrowing, have observed this to be a problem in practice.
In contrast, our system provides a more natural abstraction for rea-
soning by modeling the flow of permissions through locations in
the source.

Boyland proposed fractional permissions as a generalization of
borrowing that does not require a stack discipline for creating and
destroying borrowed aliases [8]. Although fractions have received a
lot of attention in the verification community, we know of no prac-
tical tool support that leverages fractions—possibly because pro-
grammers find fractions an unintuitive abstraction. Instead, tools
like Plural [3], Chalice [17], and VeriFast [21] provide abstractions
(including borrowing) that hide fractions from users, but the use
of program analysis and theorem provers makes these systems less
predictable and more difficult to understand than the type system
presented here. Boyland and Retert later developed a type system
that allows borrowing unique permissions [10]. Like our system,
their system tracks permissions taken out of individual fields using
a technique they call “carving.” However, where they use a sub-
structural logic for tracking permissions, we use a more predictable
linear context to type individual variables.

One of the authors previously observed the importance of bor-
rowing for tracking permissions and presented the first fraction-
free permission type system we are aware of that supports borrow-
ing unique and immutable permissions [2]. While the technical de-
tails are somewhat different, the system presented in [2], similar
to this system, avoids fractions by counting split-off permissions
in variable types. We propose local permissions to distinguish
borrowed permissions syntactically, as well as none permissions,
both of which remain implicit in [2]. Our system additionally sup-
ports share permissions, match expressions and sequences, and our
system tracks permissions taken out of individual fields. Unlike [2],
we provide a dynamic semantics and prove our system sound.

Other programming languages have incorporated the ideas of
uniqueness and borrowing into their type systems but use less
flexible or more complicated mechanisms. The Clean programming
language [25] is a functional language with support for unique
references. However, since the language is functional, there is no
concept for returning permissions to a previous location as in our
system.

The Vault programming language [13] allows linear (unique)
references to be split into guarded (immutable) types that are
valid in the scope of a key. Their use of type-level keys adds nota-
tional and algorithmic complexity to the scoping of borrowed per-
missions that we avoid by using our simpler local permissions. On
the other hand, Vault supports adoption whereby a linear permis-
sion stored in a field of a non-linear object can be treated linearly.
Vault also includes annotations on methods that consume permis-
sions similar to our change permissions. However ours are strictly
more flexible because in our richer set of permissions we can spec-
ify a partial return of a permission (e.g. unique>>immutable).

The Cyclone language [18] has a feature similar to Vault’s keys.
Cyclone also includes explicit support for borrowing through ref-
erence counting that is similar to the mechanism that underlies our
local permissions. However, unlike our approach, it is exposed
to the programmer in the syntax. Also, Cyclone allows borrowing
only for permissions stored in local variables; field accesses occur
via swap, which is awkward. In contrast, we have designed a field
unpacking mechanism that supports direct field access.

Other recent work on the Plaid type system [28] integrates
permissions with typestate and uses change types, providing some
of the expressiveness of our system. While this other work can
express the publication example from Figure 4, it has very limited
support for borrowing, and can only change field values with a swap
operation, which is unnatural for programmers.

An alternative to borrowing is explicitly “threading” references
from one call to another, as supported in Alms [26]. In this ap-
proach, the permission is tied to the reference; it is given up per-
manently when the reference is passed to a function, but the func-
tion may return the reference again along with a permission. This
approach is very clear and explicit, but it is quite awkward and fur-
thermore results in additional writes when the result reference is
re-assigned to the reference variable.

Overall, the system presented in this paper is distinguished
by supporting natural programming and reasoning abstractions
together with a broad set of permissions including immutable,
unique, and shared. As a type system defined by local rules, it
is easy for programmers to follow, and separating permission flow
from references makes it more succinct than systems in which ref-
erences must be threaded explicitly. We hope it will serve as a
robust foundation for making permission-based programming lan-
guages such as Plaid practical enough for widespread use.

5. Conclusion and Future Work
We have described a new type system for flexible borrowing of
unique, shared, and immutable permissions without explicit frac-
tions. As future work, we would like to integrate our borrowing
mechanism with Plaid’s typestate features, and gain experience us-
ing the type system on larger codebases.

Acknowledgements
This material is based upon work supported by the National
Science Foundation under grant #CCF-1116907, “Foundations
of Permission-Based Object-Oriented Languages,” grant #CCF-
0811592, “Practical Typestate Verification with Assume-Guarantee
Reasoning,” and grant #1019343 to the Computing Research As-
sociation for the CIFellows Project. We thank the anonymous re-
viewers for their helpful feedback.

References
[1] J. Aldrich, V. Kostadinov, and C. Chambers. Alias Annotations for

Program Understanding. In OOPSLA, 2002.
[2] K. Bierhoff. Automated program verification made SYMPLAR:

SYMbolic Permissions for Lightweight Automated Reasoning. In On-
ward!, 2011.

[3] K. Bierhoff and J. Aldrich. Modular typestate checking of aliased
objects. In OOPSLA, 2007.

[4] K. Bierhoff, N. E. Beckman, and J. Aldrich. Practical API protocol
checking with access permissions. In OOPSLA, 2009.

[5] B. Bokowski and J. Vitek. Confined types. In OOPSLA, 1999.
[6] C. Boyapati, R. Lee, and M. Rinard. Ownership types for safe pro-

gramming: preventing data races and deadlocks. In OOPSLA, 2002.
[7] J. Boyland. Alias Burying: Unique Variables without Destructive

Reads. Software Practice and Experience, 6(31):533–553, 2001.
[8] J. Boyland. Checking interference with fractional permissions. In

Static Analysis Symposium, 2003.
[9] J. Boyland, J. Noble, and W. Retert. Capabilities for sharing: A

generalisation of uniqueness and read-only. In ECOOP, 2001.
[10] J. T. Boyland and W. Retert. Connecting Effects and Uniqueness With

Adoption. In POPL, 2005.
[11] R. DeLine and M. Fähndrich. Enforcing high-level protocols in low-

level software. In PLDI, 2001.
[12] R. DeLine and M. Fähndrich. Typestates for objects. In ECOOP,

2004.
[13] M. Fähndrich and R. DeLine. Adoption and focus: Practical linear

types for imperative programming. In PLDI, 2002.
[14] J.-Y. Girard. Linear logic. Theoretical Comp. Sci., 50(1):1–102, 1987.
[15] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and J. Cheney.

Region-based memory management in cyclone. In PLDI, 2002.
[16] D. Harms and B. Weide. Copying and Swapping: Influences on the

design of reusable software components. Trans. Software Engineering,
17(5):424–435, May 1991.

[17] S. Heule, R. Leino, P. Müller, and A. Summers. Fractional permissions
without the fractions. In FTfFP, 2011.

[18] M. Hicks, G. Morrisett, D. Grossman, and T. Jim. Experience with
safe manual memory-management in cyclone. In ISMM, 2004.

[19] J. Hogg. Islands: Aliasing Protection in Object-Oriented Languages.
In OOPSLA, 1991.

[20] R. C. Holt, P. A. Matthews, J. A. Rosselet, and J. R. Cordy. The Turing
Language: Design and Definition. Prentice-Hall, 1988.

[21] B. Jacobs, J. Smans, P. Philippaerts, F. Vogels, W. Penninckx, and
F. Piessens. VeriFast: A Powerful, Sound, Predictable, Fast Verifier
for C and Java. In NASA Formal Methods, 2011.

[22] N. H. Minsky. Towards alias-free pointers. In ECOOP, 1996.
[23] K. Naden, R. Bocchino, J. Aldrich, and K. Bierhoff. A type sys-

tem for borrowing permissions. Technical Report CMU-CS-11-142,
Computer Science Department, Carnegie Mellon University, Decem-
ber 2011.

[24] J. Noble, J. Vitek, and J. Potter. Flexible alias protection. In ECOOP.
Springer, 1998.

[25] S. Smetsers, E. Barendsen, M. van Eekelen, and R. Plasmeijer. Guar-
anteeing safe destructive updates through a type system with unique-
ness information for graphs. In Dagstuhl Seminar on Graph Transfor-
mations in Comp. Sci., volume 776 of LNCS. Springer, 1994.

[26] J. A. Tov and R. Pucella. Practical affine types. In POPL, 2011.
[27] P. Wadler. Linear types can change the world! In Working Conf. on

Programming Concepts and Methods, 1990.
[28] R. Wolff, R. Garcia, Éric Tanter, and J. Aldrich. Gradual typestate. In

ECOOP, 2011.

